Abstract Assimilating radar reflectivity into convective-scale NWP models remains a challenging topic in radar data assimilation. A primary reason is that the reflectivity forward observation operator is highly nonlinear. To address this challenge, a power transformation function is applied to the WRF Model’s hydrometeor and water vapor mixing ratio variables in this study. Three 3D variational data assimilation experiments are performed and compared for five high-impact weather events that occurred in 2019: (i) a control experiment that assimilates reflectivity using the original hydrometeor mixing ratios as control variables, (ii) an experiment that assimilates reflectivity using power-transformed hydrometeor mixing ratios as control variables, and (iii) an experiment that assimilates reflectivity and retrieved pseudo–water vapor observations using power-transformed hydrometeor and water vapor mixing ratios (qυ) as control variables. Both qualitative and quantitative evaluations are performed for 0–3-h forecasts from the five cases. The analysis and forecast performance in the two experiments with power-transformed mixing ratios is better than the control experiment. Notably, the assimilation of pseudo–water vapor with power-transformedqυas an additional control variable is found to improve the performance of the analysis and short-term forecasts for all cases. In addition, the convergence rate of the cost function minimization for the two experiments that use the power transformation is faster than that of the control experiments. Significance StatementThe effective use of radar reflectivity observations in any data assimilation scheme remains an important research topic because reflectivity observations explicitly include information about hydrometeors and also implicitly include information about the distribution of moisture within storms. However, it is difficult to assimilate reflectivity because the reflectivity forward observation operator is highly nonlinear. This study seeks to identify a more effective way to assimilate reflectivity into a convective-scale NWP model to improve the accuracy of predictions of high-impact weather events.
more »
« less
This content will become publicly available on October 28, 2026
Direct Assimilation of Radar Reflectivity Data in Logarithmic Scale or Power Transform?
Abstract To cover its large dynamic range, radar reflectivity factors have historically been displayed and used on a logarithmic scale, that is, decibels of reflectivity (dBZ). Logarithmic reflectivity has also been used for data assimilation without being questioned or well validated. However, fundamental limitations exist with directly assimilating logarithmic reflectivity, such as strong nonlinearity of the observation forward operator and the fact that the impacts of small reflectivity values are amplified, leading to exaggerated increments when mapped back into physical space. In this study, we power‐transform both reflectivity and hydrometeor mixing ratios to alleviate the aforementioned issues with using conventional logarithmic reflectivity. Forecast evaluation across eight severe convection events demonstrates that applying the Box‐Cox power transformations to both reflectivity and hydrometeor mixing ratios effectively reduces the nonlinearity between the observations and control variables. This approach significantly improves analyses of model hydrometeor variables and forecasts of composite reflectivity and hourly precipitation.
more »
« less
- Award ID(s):
- 2527406
- PAR ID:
- 10656735
- Publisher / Repository:
- American Geophysics Union
- Date Published:
- Journal Name:
- Geophysical Research Letters
- Volume:
- 52
- Issue:
- 20
- ISSN:
- 0094-8276
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Assimilating polarimetric radar data within a double-moment microphysics scheme requires that both hydrometeor mixing ratios and number concentrations be updated simultaneously to effectively utilize the radar information. This study directly assimilates polarimetric radar data in a fraternal twin observing system simulation experiment (OSSE) using both mixing ratios and number concentrations as analysis variables within a variational approach. A newly developed set of parameterized forward operators for polarimetric radar data, incorporating a new continuous melting model, is employed. To address challenges in minimizing the cost function, a power transformation function is applied to the analysis variables of mixing ratios and number concentrations. This approach alleviates issues arising from the very large dynamic range of number concentrations and the highly nonlinear relationship between the model’s hydrometeors and radar variables. Results from several groups of sensitivity experiments show that updating number concentrations using an appropriate power transformation function together with mixing ratios of hydrometeors reduces the analysis errors of radar variables and improves the analysis of polarimetric radar signatures. Updating number concentrations proves to be quite sensitive when assimilating differential reflectivity, while the additional assimilation of specific differential phase yields smaller analysis errors for reflectivity and mixing ratios of water vapor and rainwater compared to differential reflectivity assimilation alone. Experiments with smaller observation errors provide better analyses of the radar variables but also increase model variable analysis errors. Among the threshold values tested for reflectivity and polarimetric variables, assimilating polarimetric variables at grids where reflectivity exceeds 15 dBZprovides the best qualitative analysis.more » « less
-
null (Ed.)Abstract A polarimetric radar–based method for retrieving atmospheric ice particle shapes is applied to snowfall measurements by a scanning K a -band radar deployed at Oliktok Point, Alaska (70.495°N, 149.883°W). The mean aspect ratio, which is defined by the hydrometeor minor-to-major dimension ratio for a spheroidal particle model, is retrieved as a particle shape parameter. The radar variables used for aspect ratio profile retrievals include reflectivity, differential reflectivity, and the copolar correlation coefficient. The retrievals indicate that hydrometeors with mean aspect ratios below 0.2–0.3 are usually present in regions with air temperatures warmer than approximately from −17° to −15°C, corresponding to a regime that has been shown to be favorable for growth of pristine ice crystals of planar habits. Radar reflectivities corresponding to the lowest mean aspect ratios are generally between −10 and 10 dB Z . For colder temperatures, mean aspect ratios are typically in a range between 0.3 and 0.8. There is a tendency for hydrometeor aspect ratios to increase as particles transition from altitudes in the temperature range from −17° to −15°C toward the ground. This increase is believed to result from aggregation and riming processes that cause particles to become more spherical and is associated with areas demonstrating differential reflectivity decreases with increasing reflectivity. Aspect ratio retrievals at the lowest altitudes are consistent with in situ measurements obtained using a surface-based multiangle snowflake camera. Pronounced gradients in particle aspect ratio profiles are observed at altitudes at which there is a change in the dominant hydrometeor species, as inferred by spectral measurements from a vertically pointing Doppler radar.more » « less
-
Abstract To improve short‐term severe weather forecasts through assimilation of polarimetric radar data (PRD), the use of accurate and efficient forward operators for polarimetric radar variables is required. In this study, a new melting model is proposed to estimate the mixing ratio and number concentration of melting hydrometeor species and incorporated in a set of parameterized polarimetric radar forward operators. The new melting model depends only on the mixing ratio and number concentration of rain and ice species and is characterized by its independence from ambient temperature and its simplicity and ease of linearization. To assess the impact of this newly proposed melting model on the simulated polarimetric radar variables, a real mesoscale convective system is simulated using three double‐moment microphysics schemes. Compared with the output of the original implementation of the parameterized forward operators (PFO_Old) that rely on an “old” melting model which only estimates the mixing ratio of the melting species, the updated implementation with the new melting model (PFO_New) that estimates both the mixing ratio and number concentration of melting species eliminates the very large mass/volume‐weighted mean diameter (Dm) at the bottom of the melting layer and produces more reasonable melting layer signatures for all three double‐moment microphysics schemes that more closely match the corresponding radar observations. This suggests that the new melting model has more reasonable implicit estimates of mixing ratios and number concentrations of melting hydrometeor species than the “old” melting model.more » « less
-
A polarimetric radar method to estimate mean shapes of ice hydrometeors was applied to several snowfall and ice cloud events observed by operational and research weather radars. The hydrometeor shape information is described in terms of their aspect ratios, r, which represent the ratio of particle minor and major dimensions. The method is based on the relations between depolarization ratio (DR) estimates and aspect ratios. DR values, which are a proxy for circular depolarization ratio, were reconstructed from radar variables of reflectivity factor, Ze, differential reflectivity, ZDR, and copolar correlation coefficient ρhv, which are available from radar systems operating in either simultaneous or alternate transmutation of horizontally and vertically polarized signals. DR-r relations were developed for retrieving aspect ratios and their sensitivity to different assumptions and model uncertainties were discussed. To account for changing particle bulk density, which is a major contributor to the retrieval uncertainty, an approach is suggested to tune the DR-r relations using reflectivity-based estimates of characteristic hydrometeor size. The analyzed events include moderate snowfall observed by an operational S-band weather radar and a precipitating ice cloud observed by a scanning Ka-band cloud radar at an Arctic location. Uncertainties of the retrievals are discussed.more » « less
An official website of the United States government
