skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on October 8, 2026

Title: Role of Vascular Smooth Muscle Cell Mechanics in Vascular Wall Stiffening
Award ID(s):
2304667
PAR ID:
10656781
Author(s) / Creator(s):
;
Publisher / Repository:
Biomedical Engineering Society
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Despite their ecological significance, non‐vascular photoautotrophs (NVPs) are frequently excluded from ecological experimental studies, leading to a limited comprehension of how their communities are affected by the ecosystem dynamics and an underestimation of their role in ecosystem functioning. We studied the impact of vascular plant taxonomic and functional diversity on three groups of ground NVPs (lichens, bryophytes, and cyanobacteria) within one of the longest‐running plant biodiversity experiments (Biodiversity and Ecosystem Function at Cedar Creek Ecosystem Science Reserve). Utilizing the permanent plot framework of this experiment, we analyzed the effects of almost 30 years of treatment across various levels of vascular plant taxonomic and functional diversity on NVPs. For each diversity level we documented NVP cover and richness. Using generalized linear models we evaluated the effect of vascular plant taxonomic and functional diversity, as well as environmental factors affected by vascular diversity (such as vascular plant cover, light penetration, soil nutrient content, and microtopography) on NVP richness and cover. Using these models, we conducted structural equation modeling analyses (SEM) that allowed us to differentiate the direct and indirect impacts of vascular plant taxonomic and functional diversity on NVPs. Our results showed that both lichen and bryophyte richness and cover decreased with higher vascular plant taxonomic and functional diversity, while cyanobacteria cover increased as a function of the same parameters. We also showed that microtopography serves as better predictor for lichens and bryophytes, while nutrient‐related factors perform better as predictors for cyanobacteria. Additionally, our findings indicate that NVP cover ranged from 0.001% to 100% (mean 15%) in the surveyed plots, representing a major, still ignored, component of the experimental plots. This study shows that vascular plant diversity directly and indirectly affects NVP communities, but the consequences of these effects at community and ecosystem levels are still to be explored. 
    more » « less
  2. null (Ed.)
  3. Abstract 3D bioprinting is an emerging additive manufacturing technique to fabricate constructs for human disease modeling. However, current cell‐laden bioinks lack sufficient biocompatibility, printability, and structural stability needed to translate this technology to preclinical and clinical trials. Here, a new class of nanoengineered hydrogel‐based cell‐laden bioinks is introduced, that can be printed into 3D, anatomically accurate, multicellular blood vessels to recapitulate both the physical and chemical microenvironments of native human vasculature. A remarkably unique characteristic of this bioink is that regardless of cell density, it demonstrates a high printability and ability to protect encapsulated cells against high shear forces in the bioprinting process. 3D bioprinted cells maintain a healthy phenotype and remain viable for nearly one‐month post‐fabrication. Leveraging these properties, the nanoengineered bioink is printed into 3D cylindrical blood vessels, consisting of living co‐culture of endothelial cells and vascular smooth muscle cells, providing the opportunity to model vascular function and pathophysiology. Upon cytokine stimulation and blood perfusion, this 3D bioprinted vessel is able to recapitulate thromboinflammatory responses observed only in advanced in vitro preclinical models or in vivo. Therefore, this 3D bioprinted vessel provides a potential tool to understand vascular disease pathophysiology and assess therapeutics, toxins, or other chemicals. 
    more » « less
  4. Abstract IntroductionAbnormal angiogenesis is central to vascular disease and cancer, and noninvasive biomarkers of vascular origin are needed to evaluate patients and therapies. Vascular endothelial growth factor receptors (VEGFRs) are often dysregulated in these diseases, making them promising biomarkers, but the need for an invasive biopsy has limited biomarker research on VEGFRs. Here, we pioneer a blood biopsy approach to quantify VEGFR plasma membrane localization on two circulating vascular proxies: circulating endothelial cells (cECs) and circulating progenitor cells (cPCs). MethodsUsing quantitative flow cytometry, we examined VEGFR expression on cECs and cPCs in four age-sex groups: peri/premenopausal females (aged < 50 years), menopausal/postmenopausal females (≥ 50 years), and younger and older males with the same age cut-off (50 years). ResultscECs in peri/premenopausal females consisted of two VEGFR populations: VEGFR-low (~ 55% of population: population medians ~ 3000 VEGFR1 and 3000 VEGFR2/cell) and VEGFR-high (~ 45%: 138,000 VEGFR1 and 39,000–236,000 VEGFR2/cell), while the menopausal/postmenopausal group only possessed the VEGFR-low cEC population; and 27% of cECs in males exhibited high plasma membrane VEGFR expression (206,000 VEGFR1 and 155,000 VEGFR2/cell). The absence of VEGFR-high cEC subpopulations in menopausal/postmenopausal females suggests that their high-VEGFR cECs are associated with menstruation and could be noninvasive proxies for studying the intersection of age-sex in angiogenesis. VEGFR1 plasma membrane localization in cPCs was detected only in menopausal/postmenopausal females, suggesting a menopause-specific regenerative mechanism. ConclusionsOverall, our quantitative, noninvasive approach targeting cECs and cPCs has provided the first insights into how sex and age influence VEGFR plasma membrane localization in vascular cells. 
    more » « less