Even with strong-column-weak-beam design requirements, story mechanisms have been observed in Moment Resisting Frames (MRF), resulting in concentrated drift demands that can result in severe structural damage to drift-sensitive components. Frame-Spine systems can redistribute demands with building height, but near-elastic higher-mode effects tend to contribute to floor accelerations, affecting damage to acceleration-sensitive nonstructural components. To mitigate this tradeoff, Force-Limiting Connections (FLCs) have been proposed to reduce accelerations through yielding components between the Frame and Spine, thereby limiting the magnitude of the forces. This study examines the sizing and placement of FLCs in a four-story Frame-Spine system using stochastic simulations. The T-shape yielding element dimensions in the FLC were modeled as random variables at each floor, and Monte Carlo simulations were used to explore their effect on drifts and accelerations. Results show the dominant role of the first-story FLC on balancing drifts and accelerations, while upper-story devices offered limited benefit. Design recommendations are provided to constrain first-story yielding element dimensions within effective bounds that reduce peak accelerations relative to the baseline Frame-Spine configuration.
more »
« less
This content will become publicly available on July 13, 2027
Higher-mode response of Frame-Spine and Frame-Spine-FLC specimens tested at E-Defense shake table
Concentration of drifts due to story mechanisms can lead to severe structural damage and economic loss. Frame-Spine systems have been proposed to mitigate these effects by redistributing drift demands with building height; however, systems can also exhibit near-elastic higher-mode effects, resulting in forces and floor accelerations that remain largely unreduced by inelastic behavior, thereby adversely affecting acceleration-sensitive nonstructural components and occupants. To address near-elastic higher-mode effects, Force-Limiting Connections (FLCs) have been introduced limiting force transfer between the frame and the spine and reducing acceleration demands through controlled yielding components. This study presents observations from full-scale shake-table testing of a four-story Frame-Spine and a Frame-Spine-FLC specimen at E-Defense. Results highlight higher-mode effects under strong shaking, with emphasis on (1) story shear resisted by the spine, (2) force–deformation behavior of the spine-to-frame connections, and (3) vertical distribution of forces. These findings provide experimental evidence of higher-mode participation in Frame-Spine systems and support the development of improved design guidance and controlling mechanisms.
more »
« less
- Award ID(s):
- 2309829
- PAR ID:
- 10657016
- Publisher / Repository:
- 13th National Conference on Earthquake Engineering (13NCEE)
- Date Published:
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract. A novel structural system is being investigated collaboratively – by an international team including three U.S. universities, two Japanese universities and two major experimental research labs – as a means to protect essential facilities, such as hospitals, where damage to the building and its contents and occupant injuries must be prevented and where continuity of operation is imperative during large earthquakes. The new system employs practical structural components, including (1) flexible steel moment frames, (2) stiff steel elastic spines and (3) force-limiting connections (FLC) that connect the frames to the spines, to economically control building response and prevent damaging levels of displacement and acceleration. The moment frames serve as the economical primary element of the system to resist a significant proportion of the lateral load, dissipate energy through controlled nonlinear response and provide persistent positive lateral stiffness. The spines distribute response evenly over the height of the building and prevent story mechanisms, and the FLCs reduce higher-mode effects and provide supplemental energy dissipation. The Frame- Spine-FLC System development is focusing on new construction, but it also has potential for use in seismic retrofit of deficient existing buildings. This paper provides an overview of the ongoing research project, including selected FLC cyclic test results and a description of the full-scale shake-table testing of a building with the Frame-Spine-FLC System, which represents a hospital facility and includes realistic nonstructural components and medical equipment.more » « less
-
A novel structural system is being developed collaboratively by researchers from the United States and Japan to protect essential facilities, such as hospitals, where damage to the building and its contents and occupant injuries must be prevented and where continuity of operation must be maintained. The development is focusing on new construction, but it also has potential for use in seismic retrofit of deficient existing buildings. The new system employs practical structural components, including (1) flexible steel moment frames, (2) stiff steel elastic spines and (3) force-limiting connections (FLC) that connect the frames to the spines, to economically control building response and prevent damaging levels of displacement and acceleration. The moment frames serve as the economical primary element of the system to resist a significant proportion of the lateral load, dissipate energy through controlled nonlinear response and provide persistent positive lateral stiffness. The spines distribute response evenly over the height of the building and prevent story mechanisms, and the FLC reduce higher-mode effects and provide supplemental energy dissipation. The full-scale shake-table testing of a building with the Frame-Spine-FLC System, which represents a hospital facility and includes realistic nonstructural components and medical equipment, validated the functionality of the structural system.more » « less
-
A new seismic-resilient structural system is being developed to protect buildings, their contents, and occupants during major earthquakes. This economical system is intended for essential facilities, such as hospitals, where damage to the buildings and contents and occupant injuries must be prevented and where continuity of operation is imperative. The primary components of the Frame-Spine-FLC System are: (1) steel base moment-resisting frames designed and detailed to behave in the inelastic range and dissipate energy, (2) stiff and strong elastic spines designed to remain essentially elastic to redistribute seismic demands more uniformly over the building height, and (3) force-limiting connections (FLC) that connect the frame to the spines to provide a yielding mechanism that limits acceleration demands. An international team, including three U.S. universities, two Japanese universities and two major experimental research labs, is collaborating on this project and recently conducted full-scale shake-table testing at the E-Defense facility in Miki, Japan. The test building represents a hospital facility and includes realistic nonstructural components and medical equipment. This paper provides an overview of the shake-table testing program and presents preliminary results that demonstrate the seismic stability response of the Frame-Spine-FLC System and the overall viability of the new concept.more » « less
-
Steel moment-resisting frames (MRFs) are widely used in the United States to resist seismic forces. MRFs have many advantages, including high ductility, architectural versatility, and vetted member and connection detailing requirements. However, MRFs require large members to meet story drift criteria. Moreover, strong-column-weak-beam requirements can result in significant member sizes, and – even in the cases where strong-column-weak-beam requirements are satisfied – MRFs can still be vulnerable to story mechanisms in one or a few stories. Recently, the concept of a strongback has been utilized successfully to delay or prevent story mechanism behavior in braced frames. The strongback is represented by a steel truss or column that is designed to remain essentially elastic, thus allowing the system to transfer inelastic demands across stories. Although systems including strongbacks exhibit more uniform story drift demands with building height and reduced peak drift response, the elastic nature of the strongback can also result in near-elastic higher-mode force demands. This study compares the dynamic response of a baseline MRF to that of a retrofit using a strongback column. Several ground motions are considered to determine which cases produce the largest drift, acceleration, and force demands.more » « less
An official website of the United States government
