skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on September 8, 2026

Title: Why choose when you can have both: Programmable data planes meet programmable optics
Award ID(s):
2132651 2126281
PAR ID:
10657036
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
ACM
Date Published:
Page Range / eLocation ID:
26 to 33
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Program synthesis is now a reality, and we are approaching the point where domain-specific synthesizers can now handle problems of practical sizes. Moreover, some of these tools are finding adoption in industry. However, for synthesis to become a mainstream technique adopted at large by programmers as well as by end-users, we need to design programmable synthesis frameworks that (i) are not tailored to specific domains or languages, (ii) enable one to specify synthesis problems with a variety of qualitative and quantitative objectives in mind, and (iii) come equipped with theoretical as well as practical guarantees. We report on our work on designing such frameworks and on building synthesis engines that can handle program-synthesis problems describable in such frameworks, and describe open challenges and opportunities. 
    more » « less
  2. Abstract Metasurfaces open up unprecedented potential for wave engineering using subwavelength sheets. However, a severe limitation of current acoustic metasurfaces is their poor reconfigurability to achieve distinct functions on demand. Here a programmable acoustic metasurface that contains an array of tunable subwavelength unit cells to break the limitation and realize versatile two‐dimensional wave manipulation functions is reported. Each unit cell of the metasurface is composed of a straight channel and five shunted Helmholtz resonators, whose effective mass can be tuned by a robust fluidic system. The phase and amplitude of acoustic waves transmitting through each unit cell can be modulated dynamically and continuously. Based on such mechanism, the metasurface is able to achieve versatile wave manipulation functions, by engineering the phase and amplitude of transmission waves in the subwavelength scale. Through acoustic field scanning experiments, multiple wave manipulation functions, including steering acoustic waves, engineering acoustic beams, and switching on/off acoustic energy flow by using one design of metasurface are visually demonstrated. This work extends the metasurface research and holds great potential for a wide range of applications including acoustic imaging, communication, levitation, and tweezers. 
    more » « less
  3. null (Ed.)