Abstract Recent theoretical studies have suggested that transition metal perovskite oxide membranes can enable surface phonon polaritons in the infrared range with low loss and much stronger subwavelength confinement than bulk crystals. Such modes, however, have not been experimentally observed so far. Here, using a combination of far-field Fourier-transform infrared (FTIR) spectroscopy and near-field synchrotron infrared nanospectroscopy (SINS) imaging, we study the phonon polaritons in a 100 nm thick freestanding crystalline membrane of SrTiO3transferred on metallic and dielectric substrates. We observe a symmetric-antisymmetric mode splitting giving rise to epsilon-near-zero and Berreman modes as well as highly confined (by a factor of 10) propagating phonon polaritons, both of which result from the deep-subwavelength thickness of the membranes. Theoretical modeling based on the analytical finite-dipole model and numerical finite-difference methods fully corroborate the experimental results. Our work reveals the potential of oxide membranes as a promising platform for infrared photonics and polaritonics.
more »
« less
Low‐Loss Far‐Infrared Surface Phonon Polaritons in Suspended SrTiO 3 Nanomembranes
Phonon polaritons (PhPs), excitations arising from the coupling of light with lattice vibrations, enable light confinement and local field enhancement, which is essential for various photonic and thermal applications. To date, PhPs with high confinement and low loss are mainly observed in the mid‐infrared regime and mostly in manually exfoliated flakes of van der Waals (vdW) materials. In this work, the existence of low‐loss, thickness‐tunable phonon polaritons in the far‐infrared regime within transferable freestanding SrTiO3membranes synthesized through a scalable approach, achieving high figures of merit is demonstrated, which are comparable to the previous record values from the vdW materials. Leveraging atomic precision in thickness control, large dimensions, and compatibility with mature oxide electronics, functional oxide membranes present a promising large‐scale 2D platform alternative to vdW materials for on‐chip polaritonic technologies in the infrared regime.
more »
« less
- PAR ID:
- 10657241
- Publisher / Repository:
- Wiley
- Date Published:
- Journal Name:
- Advanced Functional Materials
- ISSN:
- 1616-301X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Recent theoretical studies have suggested that transition metal perovskite oxide membranes can enable surface phonon polaritons in the infrared range with low loss and much stronger subwavelength confinement than bulk crystals. Such modes, however, have not been experimentally observed so far. Here, using a combination of far-field Fourier-transform infrared (FTIR) spectroscopy and near-field synchrotron infrared nanospectroscopy (SINS) imaging, we study the phonon polaritons in a 100 nm thick freestanding crystalline membrane of SrTiO3 transferred on metallic and dielectric substrates. We observe a symmetric-antisymmetric mode splitting giving rise to epsilon-near-zero and Berreman modes as well as highly confined (by a factor of 10) propagating phonon polaritons, both of which result from the deep-subwavelength thickness of the membranes. Theoretical modeling based on the analytical finite-dipole model and numerical finite-difference methods fully corroborate the experimental results. Our work reveals the potential of oxide membranes as a promising platform for infrared photonics and polaritonics.more » « less
-
Polar van der Waals (vdW) crystals, composed of atomic layers held together by vdW forces, can host phonon polaritons—quasiparticles arising from the interaction between photons in free-space light and lattice vibrations in polar materials. These crystals offer advantages such as easy fabrication, low Ohmic loss, and optical confinement. Recently, hexagonal boron nitride (hBN), known for having hyperbolicity in the mid-infrared range, has been used to explore multiple modes with high optical confinement. This opens possibilities for practical polaritonic nanodevices with subdiffractional resolution. However, polariton waves still face exposure to the surrounding environment, leading to significant energy losses. In this work, we propose a simple approach to inducing a hyperbolic phonon polariton (HPhP) waveguide in hBN by incorporating a low dielectric medium, ZrS2. The low dielectric medium serves a dual purpose—it acts as a pathway for polariton propagation, while inducing high optical confinement. We establish the criteria for the HPhP waveguide in vdW heterostructures with various thicknesses of ZrS2 through scattering-type scanning near-field optical microscopy (s-SNOM) and by conducting numerical electromagnetic simulations. Our work presents a feasible and straightforward method for developing practical nanophotonic devices with low optical loss and high confinement, with potential applications such as energy transfer, nano-optical integrated circuits, light trapping, etc.more » « less
-
Abstract Polar dielectrics are key materials of interest for infrared (IR) nanophotonic applications due to their ability to host phonon‐polaritons (PhPs) that allow for low‐loss, subdiffractional control of light. The properties of phonon‐polaritons are limited by the characteristics of optical phonons, which are nominally fixed for most “bulk” materials. Superlattices composed of alternating atomically‐thin materials offer control over crystal anisotropy through changes in composition, optical phonon confinement, and the emergence of new modes. In particular, the modified optical phonons in superlattices offer the potential for so‐called crystalline hybrids whose IR properties cannot be described as a simple mixture of the bulk constituents. To date, however, studies have primarily focused on identifying the presence of new or modified optical phonon modes rather than assessing their impact on the IR response. This study focuses on assessing the impact of confined optical phonon modes on the hybrid IR dielectric function in superlattices of GaSb and AlSb. Using a combination of first principles theory, Raman, FTIR, and spectroscopic ellipsometry, the hybrid dielectric function is found to track with the confinement of optical phonons, leading to optical phonon spectral shifts of up to 20 cm−1. These results provide an alternative pathway towards designer IR optical materials. This article is protected by copyright. All rights reservedmore » « less
-
The advent of layered materials has unveiled new opportunities for tailoring electromagnetic waves at the subwavelength scale, particularly through the study of polaritons, a hybrid light–matter excitation. In this context, twist-optics, which investigates the optical properties of twisted stacks of van der Waals (vdW) layered specimens, has emerged as a powerful tool. Here, we explore the tunability of phonon polaritons in α-V2O5via interlayer twisting using scanning nano-infrared (IR) imaging. We show that the polaritonic response can be finely adjusted by varying their interlayer electromagnetic coupling, allowing for precise control over the propagation direction and phase transition from open unidirectional iso-frequency contours to closed elliptic geometries. Our experimental results, in conjugate with theoretical modeling, reveal the mechanisms underpinning this tunability, highlighting the role of twist-induced nano-light modifications for advanced nanophotonic control at the nanoscale.more » « less
An official website of the United States government

