skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on November 16, 2026

Title: Cortical response to balance perturbation is more sensitive in modern dancers than nondancers during biomechanically similar balance recovery
ABSTRACT Motor skill expertise can facilitate more automatic movement, engaging less cortical activity while producing appropriate motor output. Accordingly, cortical-evoked N1 responses to balance perturbation, assessed using electroencephalography (EEG), are smaller in young and older adults with better balance. These responses may thus reflect individual balance challenge versus functional, or objective, task difficulty. However, the effect of balance expertise on cortical responses to balance perturbation has not been studied. We hypothesized that balance ability gained though long-term training facilitates more automatic balance control. Using professional modern dancers as balance experts, we compared cortical-evoked responses and biomechanics of the balance-correcting response between modern dancers and nondancers. We predicted that modern dancers would have smaller cortical-evoked responses and better balance recovery at equivalent levels of balance challenge. Support-surface perturbations were normalized to individual challenge levels by delivering perturbations scaled to 60% and 140% of each individual’s step threshold. In contrast to our prediction, dancers exhibited larger N1 responses compared to nondancers while demonstrating similar biomechanical responses. Our results suggest dancers have greater cortical sensitivity to balance perturbations than nondancers. Further, dancer N1 responses modulated across perturbation magnitudes according to differences in objective task difficulty. In contrast, nondancer N1 responses modulated as a function of individual challenge level. Our findings suggest dance training increases sensitivity of the initial, cortical N1 response to balance perturbation, supporting postural alignment to an objective reference. The N1 response may reflect differences in balance-error processing that are altered with specific long-term training and may have implications for rehabilitation. NEW & NOTEWORTHYModern dancers show larger cortical responses to balance perturbations than nondancers, suggesting a greater sensitivity to perturbations. These results contrast with evidence of larger cortical-evoked responses in young adults with poorer balance, consistent with the cortical N1 response being a balance error assessment signal. Whereas nondancers scaled cortical responses by individual differences in N1 amplitude, dancers’ cortical responses were scaled to objective differences in perturbation magnitude, suggesting increased postural awareness due to training.  more » « less
Award ID(s):
2319710
PAR ID:
10657294
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
bioRxiv
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Capers, Miriam (Ed.)
    Supraspinal signals play a significant role in compensatory responses to postural perturbations after spinal cord injury (SCI). SCI disrupts descending motor control signals as well as ascending somatosensory information to and from below the lesion. In intact animals, While cortical signals are not necessary for basic postural tasks, but neurons in the motor cortex have been shown to respond to periodic postural perturbations in intact animals. However, the role of the cortex in postural control after spinal cord injury in response to unexpected postural perturbations has not been studied. To better understand how spinal lesions impact cortical encoding of information about unexpected postural perturbations, the activity of single neurons in the rat hindlimb sensorimotor cortex (HLSMC) were recorded during unexpected tilts before and after a complete midthoracic spinal transection. In a subset of animals, limb ground reaction forces were collected as well. Results show that responses in the HLSMC were modulated with changes in tilt severity (i.e. tilt velocity). As initial velocity of the tilt increased, more information was conveyed by the HLSMC neurons about the perturbation due to increases in both the number of recruited neurons and the magnitude of their response. After SCI hindlimb ground reaction forces were both attenuated and delayed, and the neural responses were delayed and less likely to respond to slower tilts. This resulted in a moderate decrease inan attenuation of the information conveyed by cortical neurons about the tilts, requiring more cells to convey the same amount of information as before the transection. Given that reorganization of the hindlimb sensorimotor cortex in response to therapy after complete mid-thoracic SCI is necessary for behavioral recovery, this sustained encoding of information after SCI could be a substrate for the reorganization that uses sensory information from above the lesion to control trunk muscles that permit weight-supported stepping and postural control. 
    more » « less
  2. In this paper we propose a novel neurostimulation protocol that provides an intervention-based assessment to distinguish the contributions of different motor control networks in the cortico-spinal system. Specifically, we use a combination of non-invasive brain stimulation and neuromuscular stimulation to probe neuromuscular system behavior with targeted impulse-response system identification. In this protocol, we use an in-house developed human-machine interface (HMI) for an isotonic wrist movement task, where the user controls a cursor on-screen. During the task, we generate unique motor evoked potentials based on triggered cortical or spinal level perturbations. Externally applied brain-level perturbations are triggered through TMS to cause wrist flexion/extension during the volitional task. The resultant contraction output and related reflex responses are measured by the HMI. These movements also include neuromodulation in the excitability of the brain-muscle pathway via transcranial direct current stimulation. Colloquially, spinal-level perturbations are triggered through skin-surface neuromuscular stimulation of the wrist muscles. The resultant brain-muscle and spinal-muscle pathways perturbed by the TMS and NMES, respectively, demonstrate temporal and spatial differences as manifested through the human-machine interface. This then provides a template to measure the specific neural outcomes of the movement tasks, and in decoding differences in the contribution of cortical- (long-latency) and spinal-level (short-latency) motor control. This protocol is part of the development of a diagnostic tool that can be used to better understand how interaction between cortical and spinal motor centers changes with learning, or injury such as that experienced following stroke. 
    more » « less
  3. null (Ed.)
    Wearable robotic devices are being designed to assist the elderly population and other patients with locomotion disabilities. However, wearable robotics increases the risk from falling. Neuroimaging studies have provided evidence for the involvement of frontocentral and parietal cortices in postural control and this opens up the possibility of using decoders for early detection of balance loss by using electroencephalography (EEG). This study investigates the presence of commonly identified components of the perturbation evoked responses (PEP) when a person is in an exoskeleton. We also evaluated the feasibility of using single-trial EEG to predict the loss of balance using a convolution neural network. Overall, the model achieved a mean 5-fold cross-validation test accuracy of 75.2 % across six subjects with 50% as the chance level. We employed a gradient class activation map-based visualization technique for interpreting the decisions of the CNN and demonstrated that the network learns from PEP components present in these single trials. The high localization ability of Grad-CAM demonstrated here, opens up the possibilities for deploying CNN for ERP/PEP analysis while emphasizing on model interpretability. 
    more » « less
  4. ObjectiveIndividuals with migraine exhibit heightened sensitivity to visual input that continues beyond their migraine episodes. However, the contribution of color to visual sensitivity, and how it relates to neural activity, has largely been unexplored in these individuals. BackgroundPreviously, it has been shown that, in non‐migraine individuals, patterns with greater chromaticity separation evoked greater cortical activity, regardless of hue, even when colors were isoluminant. Therefore, to investigate whether individuals with migraine experienced increased visual sensitivity, we compared the behavioral and neural responses to chromatic patterns of increasing separation in migraine and non‐migraine individuals. MethodsSeventeen individuals with migraine (12 with aura) and 18 headache‐free controls viewed pairs of colored horizontal grating patterns that varied in chromaticity separation. Color pairs were either blue‐green, red‐green, or red‐blue. Participants rated the discomfort of the gratings and electroencephalogram was recorded simultaneously. ResultsBoth groups showed increased discomfort ratings and larger N1/N2 event‐related potentials (ERPs) with greater chromaticity separation, which is consistent with increased cortical excitability. However, individuals with migraine rated gratings as being disproportionately uncomfortable and exhibited greater effects of chromaticity separation in ERP amplitude across occipital and parietal electrodes. Ratings of discomfort and ERPs were smaller in response to the blue‐green color pairs than the red‐green and red‐blue gratings, but this was to an equivalent degree across the 2 groups. ConclusionsTogether, these findings indicate that greater chromaticity separation increases neural excitation, and that this effect is heightened in migraine, consistent with the theory that hyper‐excitability of the visual system is a key signature of migraine. 
    more » « less
  5. The aim of this study was to investigate to what extent PD affects the ability to walk, respond to balance perturbations in a single training session, and produce acute short-term effects to improve compensatory reactions and control of unperturbed walking stability. Understanding the mechanism of compensation and neuroplasticity to unexpected step perturbation training during walking and static stance can inform treatment of PD by helping to design effective training regimens that remediate fall risk. Current rehabilitation therapies are inadequate at reducing falls in people with Parkinson’s disease (PD). While pharmacologic and surgical treatments have proved largely ineffective in treating postural instability and gait dysfunction in people with PD, studies have demonstrated that therapy specifically focusing on posture, gait, and balance may significantly improve these factors and reduce falls. The primary goal of this study was to assess the effectiveness of a novel and promising intervention therapy (protective step training – i.e., PST) to improve balance and reduce falls in people with PD. A secondary goal was to understand the effects of PST on proactive and reactive feedback responses during stance and gait tasks. Multiple-baseline, repeated measures analyses were performed on the multitude of proactive and reactive performance measures to assess the effects of PST on gait and postural stability parameters. In general, the results indicate that participants with PD were able to use experiences with perturbation training to integrate and adapt feedforward and feedback behaviors to reduce falls. The ability of the participants with PD to adapt to changes in task demands suggests that individuals with PD could benefit from the protective step training to facilitate balance control during rehabilitation. 
    more » « less