Abstract Atmospheric soot loadings from nuclear weapon detonation would cause disruptions to the Earth’s climate, limiting terrestrial and aquatic food production. Here, we use climate, crop and fishery models to estimate the impacts arising from six scenarios of stratospheric soot injection, predicting the total food calories available in each nation post-war after stored food is consumed. In quantifying impacts away from target areas, we demonstrate that soot injections larger than 5 Tg would lead to mass food shortages, and livestock and aquatic food production would be unable to compensate for reduced crop output, in almost all countries. Adaptation measures such as food waste reduction would have limited impact on increasing available calories. We estimate more than 2 billion people could die from nuclear war between India and Pakistan, and more than 5 billion could die from a war between the United States and Russia—underlining the importance of global cooperation in preventing nuclear war.
more »
« less
This content will become publicly available on May 13, 2026
Adapting agriculture to climate catastrophes: the nuclear winter case
Abstract Following a nuclear war, destruction would extend well beyond the blast zones due to the onset of a nuclear winter that can devastate the biosphere, including agriculture. Understanding the damage magnitude and preparing for the folly of its occurrence are critical given current geopolitical tensions. We developed and applied a framework to simulate global crop production under a nuclear winter using the Cycles agroecosystem model, incorporating ultraviolet (UV)-B radiation effects on plant growth and adaptive selection of crop maturity types (shorter cycle the lower the temperature). Using maize (Zea maizeL.) as a sentinel crop, we found that annual maize production could decline from 7% after a small-scale regional nuclear war with 5 Tg soot injection, to 80% after a global nuclear war with 150 Tg soot injection, with recovery taking from 7 to 12 years. UV-B damage would peak 6–8 years post-war and can further decrease annual maize production by 7%. Over the recovery period, adaptive selection of maize maturity types to track changing temperatures could increase production by 10% compared to a no-adaptation strategy. Seed availability may become a critical adaptation bottleneck; this and prior studies might underestimate food production declines. We propose that adaptation must include the development of Agricultural Resilience Kits consisting of region- and climate-specific seed and technology packages designed to buffer against uncertainty while supply chains recover. These kits would be congenial with the transient conditions during the recovery period, and would also be applicable to other catastrophes affecting food production.
more »
« less
- Award ID(s):
- 2017113
- PAR ID:
- 10657695
- Publisher / Repository:
- IOP Publishing
- Date Published:
- Journal Name:
- Environmental Research Letters
- Volume:
- 20
- Issue:
- 6
- ISSN:
- 1748-9326
- Page Range / eLocation ID:
- 064006
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
A limited nuclear war between India and Pakistan could ignite fires large enough to emit more than 5 Tg of soot into the stratosphere. Climate model simulations have shown severe resulting climate perturbations with declines in global mean temperature by 1.8 °C and precipitation by 8%, for at least 5 y. Here we evaluate impacts for the global food system. Six harmonized state-of-the-art crop models show that global caloric production from maize, wheat, rice, and soybean falls by 13 (±1)%, 11 (±8)%, 3 (±5)%, and 17 (±2)% over 5 y. Total single-year losses of 12 (±4)% quadruple the largest observed historical anomaly and exceed impacts caused by historic droughts and volcanic eruptions. Colder temperatures drive losses more than changes in precipitation and solar radiation, leading to strongest impacts in temperate regions poleward of 30°N, including the United States, Europe, and China for 10 to 15 y. Integrated food trade network analyses show that domestic reserves and global trade can largely buffer the production anomaly in the first year. Persistent multiyear losses, however, would constrain domestic food availability and propagate to the Global South, especially to food-insecure countries. By year 5, maize and wheat availability would decrease by 13% globally and by more than 20% in 71 countries with a cumulative population of 1.3 billion people. In view of increasing instability in South Asia, this study shows that a regional conflict using <1% of the worldwide nuclear arsenal could have adverse consequences for global food security unmatched in modern history.more » « less
-
Abstract. The global food trade system is resilient to minor disruptions but vulnerable to major ones. Major shocks can arise from global catastrophic risks, such as abrupt sunlight reduction scenarios (e.g. nuclear war) or global catastrophic infrastructure loss (e.g. due to severe geomagnetic storms or a global pandemic). We use a network model to examine how these two scenarios could impact global food trade, focusing on wheat, maize, soybeans, and rice, accounting for about 60 % of global calorie intake. Our findings indicate that an abrupt sunlight reduction scenario, with soot emissions equivalent to a major nuclear war between India and Pakistan (37 Tg), could severely disrupt trade, causing most countries to lose the vast majority of their food imports (50 %–100 % decrease), primarily due to the main exporting countries being heavily affected. Global catastrophic infrastructure loss with a comparable impact on yields as the abrupt sunlight reduction has a more homogeneous distribution of yield declines, resulting in most countries losing up to half of their food imports (25 %–50 % decrease). Thus, our analysis shows that both scenarios could significantly impact the food trade. However, the abrupt sunlight reduction scenario is likely more disruptive than global catastrophic infrastructure loss regarding the effects of yield reductions on food trade. This study underscores the vulnerabilities of the global food trade network to catastrophic risks and the need for enhanced preparedness.more » « less
-
null (Ed.)Cool-season cover crops have been shown to reduce soil erosion and nutrient discharge from maize ( Zea mays L.) and soybean [ Glycine max (L.) Merr.] production systems. However, their effects on long-term weed dynamics are not well-understood. We utilized five long-term research trials in Iowa to quantify germinable weed seedbank densities and compositions after 10+ years of cover cropping treatments. All five trials consisted of zero-tillage maize-soybean rotations managed with and without the inclusion of a yearly winter rye ( Secale cereal L.) cover crop. Seedbank sampling was conducted in the early spring before crop planting at all locations, with three of the five trials having grown a soybean crop the preceding year, and two a maize crop. Two of the trials (both previously soybean) showed significant and biologically relevant decreases (4,070 and 927 seeds m −2 , respectively) in seedbank densities in cover crop treatments compared to controls. In another two trials, one previously maize and one previously soybean, no difference was detected in seedbank densities. In the fifth trial (previously maize), there was a significant, but biologically unimportant increase of 349 seeds m −2 . All five trials' weed communities were dominated by common waterhemp [ Amaranthus tuberculatus (Moq.)], and changes in seedbank composition from cover-cropping were driven by changes in this species. Although previous studies have shown that increases in cover crop biomass are strongly correlated with weed suppression, in our study we did not find a relationship between seedbank changes and the mean amount of cover crop biomass produced over a 10-years period (experiment means ranging from 0.5 to 2.0 Mg ha −1 yr −1 ), the stability of the cover crop biomass production, nor the amount produced going into the previous crop's growing season. We conclude that long-term use of a winter rye cover crop in a maize-soybean system has the potential to meaningfully reduce the size of weed seedbanks compared to winter fallows. However, identifying the mechanisms by which this occurs requires further research into processes such as seed predation and seed decay in cover cropped systems.more » « less
-
Abstract China increasingly relies on agricultural imports, driven by its rising population and income, as well as dietary shifts. International trade offers an opportunity to relieve pressures on resource depletion and pollution, such as nitrogen (N) pollution, while it poses multiple socioeconomic challenges, such as food availability. To quantify such trade-offs considering the roles of different crop types, we developed a unique crop-specific N budget database and assessed the impacts of the crop trade on multiple sustainability concerns including N pollution caused by crop production, crop land area, independence of food supply, and trade expenditures. We quantified the ‘virtual’ N inputs and harvested areas, which are the amount of N inputs and land resources used in exporting countries for China’s crop import. In addition, we proposed the concepts of ‘alternative’ N inputs and harvested area to quantify the resources needed if imported crops were produced in China. By comparing results from ‘alternative’ and ‘virtual’ concepts, we assessed the role of trade in Chinese crops over the past 30 years (i.e. 1986–2015) in alleviating N pollution and saving cropland in China and the world. Crop imports accounted for 31% of Chinese crop N consumption in 2015, and these crop imports eased the need for an additional cropland area of 62 million ha. It also avoided an N surplus by 56 and 36 Tg (Tg = 109kg) for China and the world respectively but led to $621 billion crop trade expenditures over the 30 year period. The N pollution damage avoided by crop imports in economic terms was priced at $22 ± 16 billion in 2015, which is lower than the crop trade expenditures but may be surpassed in the future with the development of the Chinese economy. Optimizing a crop trade portfolio can shift domestic production from N-intensive crop production (e.g. maize, fruits, and vegetables) to N-efficient crop production (e.g. soybeans), and consequently mitigate an N surplus by up to 12%. Improving N use efficiency for individual crops can further increase the mitigation potential of N surplus to 30%–50%, but requires technology advancement and policy incentives.more » « less
An official website of the United States government
