skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on November 13, 2026

Title: Cross-kingdom RNA trafficking from bacteria to fungi enables plant protection against fungal pathogens
Fungal pathogens pose escalating challenges to global food security, as resistance has emerged against nearly all major fungicides used in agriculture. RNA-based antifungals offer a sustainable and environmentally friendly alternative for disease control, but their deployment is hindered by RNA instability under environmental conditions, especially in soil. In this study, we engineered two plant-beneficial soil bacteria-Bacillus subtilis (Gram-positive) and Pseudomonas putida (Gram-negative)-to produce double-stranded RNAs (dsRNAs) targeting fungal genes in the foliar and postharvest pathogen Botrytis cinerea and the soilborne pathogen Verticillium dahliae. We found that both bacterial species secrete RNA through extracellular vesicles (EVs) and that these RNAs are transported into fungal cells, demonstrating cross-kingdom RNA trafficking from bacteria to fungi. Application of dsRNA-containing bacterial EVs to plant leaves suppressed B. cinerea infection. In addition, direct treatment with dsRNA-producing bacteria protected both Arabidopsis thaliana and tomato plants from infections by B. cinerea and V. dahliae. Our findings establish beneficial bacteria as a scalable platform for continuous production and delivery of antifungal RNAs, enabling a cost-effective strategy for sustainable crop protection.  more » « less
Award ID(s):
2020731
PAR ID:
10657756
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Cell Press
Date Published:
Journal Name:
Molecular Plant
Volume:
19
Issue:
1
ISSN:
1674-2052
Page Range / eLocation ID:
100 to 115
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Summary Spray‐induced gene silencing (SIGS) is an innovative and eco‐friendly technology where topical application of pathogen gene‐targeting RNAs to plant material can enable disease control. SIGS applications remain limited because of the instability of RNA, which can be rapidly degraded when exposed to various environmental conditions. Inspired by the natural mechanism of cross‐kingdom RNAi through extracellular vesicle trafficking, we describe herein the use of artificial nanovesicles (AVs) for RNA encapsulation and control against the fungal pathogen, Botrytis cinerea . AVs were synthesized using three different cationic lipid formulations, DOTAP + PEG, DOTAP and DODMA, and examined for their ability to protect and deliver double stranded RNA (dsRNA). All three formulations enabled dsRNA delivery and uptake by B . cinerea . Further, encapsulating dsRNA in AVs provided strong protection from nuclease degradation and from removal by leaf washing. This improved stability led to prolonged RNAi‐mediated protection against B . cinerea both on pre‐ and post‐harvest plant material using AVs. Specifically, the AVs extended the protection duration conferred by dsRNA to 10 days on tomato and grape fruits and to 21 days on grape leaves. The results of this work demonstrate how AVs can be used as a new nanocarrier to overcome RNA instability in SIGS for crop protection. 
    more » « less
  2. Summary Recent discoveries show that fungi can take up environmental RNA, which can then silence fungal genes through environmental RNA interference. This discovery prompted the development of Spray‐Induced Gene Silencing (SIGS) for plant disease management. In this study, we aimed to determine the efficacy of SIGS across a variety of eukaryotic microbes. We first examined the efficiency of RNA uptake in multiple pathogenic and non‐pathogenic fungi, and an oomycete pathogen. We observed efficient double‐stranded RNA (dsRNA) uptake in the fungal plant pathogensBotrytis cinerea,Sclerotinia sclerotiorum,Rhizoctonia solani,Aspergillus nigerandVerticillium dahliae, but no uptake inColletotrichum gloeosporioides, and weak uptake in a beneficial fungus,Trichoderma virens. For the oomycete plant pathogen,Phytophthora infestans, RNA uptake was limited and varied across different cell types and developmental stages. Topical application of dsRNA targeting virulence‐related genes in pathogens with high RNA uptake efficiency significantly inhibited plant disease symptoms, whereas the application of dsRNA in pathogens with low RNA uptake efficiency did not suppress infection. Our results have revealed that dsRNA uptake efficiencies vary across eukaryotic microbe species and cell types. The success of SIGS for plant disease management can largely be determined by the pathogen’s RNA uptake efficiency. 
    more » « less
  3. Abstract Small RNAs (sRNAs) of the fungal pathogenBotrytis cinereacan enter plant cells and hijack host Argonaute protein 1 (AGO1) to silence host immunity genes. However, the mechanism by which these fungal sRNAs are secreted and enter host cells remains unclear. Here, we demonstrate thatB. cinereautilizes extracellular vesicles (EVs) to secrete Bc-sRNAs, which are then internalized by plant cells through clathrin-mediated endocytosis (CME). TheB. cinereatetraspanin protein, Punchless 1 (BcPLS1), serves as an EV biomarker and plays an essential role in fungal pathogenicity. We observe numerousArabidopsisclathrin-coated vesicles (CCVs) aroundB. cinereainfection sites and the colocalization ofB. cinereaEV marker BcPLS1 andArabidopsis CLATHRIN LIGHT CHAIN 1, one of the core components of CCV. Meanwhile, BcPLS1 and theB. cinerea-secreted sRNAs are detected in purified CCVs after infection.Arabidopsisknockout mutants and inducible dominant-negative mutants of key components of the CME pathway exhibit increased resistance toB. cinereainfection. Furthermore, Bc-sRNA loading intoArabidopsisAGO1 and host target gene suppression are attenuated in those CME mutants. Together, our results demonstrate that fungi secrete sRNAs via EVs, which then enter host plant cells mainly through CME. 
    more » « less
  4. ABSTRACT One of the most promising tools for the control of fungal plant diseases is spray‐induced gene silencing (SIGS). In SIGS, small interfering RNA (siRNA) or double‐stranded RNA (dsRNA) targeting essential or virulence‐related pathogen genes are exogenously applied to plants and postharvest products to trigger RNA interference (RNAi) of the targeted genes, inhibiting fungal growth and disease. However, SIGS is limited by the unstable nature of RNA under environmental conditions. The use of layered double hydroxide or clay particles as carriers to deliver biologically active dsRNA, a formulation termed BioClay™, can enhance RNA durability on plants, prolonging its activity against pathogens. Here, we demonstrate that dsRNA delivered as BioClay can prolong protection against Botrytis cinerea , a major plant fungal pathogen, on tomato leaves and fruit and on mature chickpea plants. BioClay increased the protection window from 1 to 3 weeks on tomato leaves and from 5 to 10 days on tomato fruits, when compared with naked dsRNA. In flowering chickpea plants, BioClay provided prolonged protection for up to 4 weeks, covering the critical period of poding, whereas naked dsRNA provided limited protection. This research represents a major step forward for the adoption of SIGS as an eco‐friendly alternative to traditional fungicides. 
    more » « less
  5. Abstract Plants communicate with their interacting microorganisms through the exchange of functional molecules. This communication is critical for plant immunity, for pathogen virulence, and for establishing and maintaining symbioses. Extracellular vesicles (EVs) are lipid bilayer‐enclosed spheres that are released by both the host and the microbe into the extracellular environment. Emerging evidence has shown that EVs play a prominent role in plant–microbe interactions by safely transporting functional molecules, such as proteins and RNAs to interacting organisms. Recent studies revealed that plant EVs deliver fungal gene‐targeting small RNAs into fungal pathogens to suppress infection via cross‐kingdom RNA interference (RNAi). In this review, we focus on the recent advances in our understanding of plant EVs and their role in plant–microbe interactions. 
    more » « less