This paper proposes a new method to measure the pose and localize the contacts with the surrounding environment for an inflatable soft robot by using optical sensors (photocells), inertial measurement units (IMUs), and a pressure sensor. These affordable sensors reside entirely aboard the robot and will be effective in environments where external sensors, such as motion capture, are not feasible to use. The entire bore of the robot is used as a waveguide to transfer the light. When the robot is working, the photocell signals vary with the current shape of the robot and the IMUs measure the orientation of its tip. Analytical functions are developed to relate the photocell signals and the robot pose. Since the soft robot is deformable, the occurrence of contact at any location on its body will modify the sensor signals. This simple measurement approach generates enough information to allow contact events to be detected and classified with high precision using a machine learning algorithm.
more »
« less
This content will become publicly available on March 12, 2026
A Configuration Sensing Approach for Fabric-Reinforced Inflatable Soft Robots Based on Interior Illumination
Not AvailablePose measurement and contact realization for soft robots are important but are also challenging to perform. In this article, a new approach is proposed which uses light transmission through the bore of the robot to sense its pose. By combining optical signals with inertial measurement units and pressure signals, along with governing models and machine learning algorithms, this sensing approach allows us to measure the pose of the soft robot in free space. It also allows the applied machine learning algorithm to estimate the robot configuration during contact events, predicting the location, direction, and magnitude of the contact force by learning from prior contact data in a training phase. The sensing devices used are affordable and widely available so that the robot can be mass-produced. Experimental results show that the proposed sensing system successfully estimates these quantities with good accuracy.
more »
« less
- Award ID(s):
- 1935312
- PAR ID:
- 10657787
- Publisher / Repository:
- Mary Ann Liebert
- Date Published:
- Journal Name:
- Robotics Reports
- Volume:
- 3
- Issue:
- 1
- ISSN:
- 2835-0111
- Page Range / eLocation ID:
- 12 to 23
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Soft robots can undergo large elastic deformations and adapt to complex shapes. However, they lack the structural strength to withstand external loads due to the intrinsic compliance of fabrication materials (silicone or rubber). In this paper, we present a novel stiffness modulation approach that controls the robot’s stiffness on-demand without permanently affecting the intrinsic compliance of the elastomeric body. Inspired by concentric tube robots, this approach uses a Nitinol tube as the backbone, which can be slid in and out of the soft robot body to achieve robot pose or stiffness modulation. To validate the proposed idea, we fabricated a tendon-driven concentric tube (TDCT) soft robot and developed the model based on Cosserat rod theory. The model is validated in different scenarios by varying the joint-space tendon input and task-space external contact force. Experimental results indicate that the model is capable of estimating the shape of the TDCT soft robot with an average root-mean-square error (RMSE) of 0.90 (0.56% of total length) mm and average tip error of 1.49 (0.93% of total length) mm. Simulation studies demonstrate that the Nitinol backbone insertion can enhance the kinematic workspace and reduce the compliance of the TDCT soft robot by 57.7%. Two case studies (object manipulation and soft laparoscopic photodynamic therapy) are presented to demonstrate the potential application of the proposed design.more » « less
-
Sensing and actuation are intricately connected in soft robotics, where contact may change actuator mechanics and robot behavior. To improve soft robotic control and performance, proprioception and contact sensors are needed to report robot state without altering actuation mechanics or introducing bulky, rigid components. For bioinspired McKibben-style fluidic actuators, prior work in sensing has focused on sensing the strain of the actuator by embedding sensors in the actuator bladder during fabrication, or by adhering sensors to the actuator surface after fabrication. However, material property mismatches between sensors and actuators can impede actuator performance, and many soft sensors available for use with fluidic actuators rely on costly or labor-intensive fabrication methods. Here, we demonstrate a low-cost and easy-to manufacture-tubular liquid metal strain sensor for use with soft actuators that can be used to detect actuator strain and contact between the actuator and external objects. The sensor is flexible, can be fabricated with commercial-off-the-shelf components, and can be easily integrated with existing soft actuators to supplement sensing, regardless of actuator shape or size. Furthermore, the soft tubular strain sensor exhibits low hysteresis and high sensitivity. The approach presented in this work provides a low-cost, soft sensing solution for broad application in soft robotics.more » « less
-
Many industries are keenly interested in detecting and classifying faults before systems are sent to the customer or fail in use. A common approach is measuring the vibration of the machine and then using a classifier to check whether a fault is present. However, this process is difficult to automate because accelerometers are applied to the unit under test and are sometimes difficult to install and maintain due to complicated surface conditions. Accurate contact-based sensing is difficult when trying to check each rotating machinery assembly product during end-of-line quality control examinations or when evaluating the machine health of pre-installed rotating machinery. A deep learning-based fault classification system using both scalar and vector acoustic signals is a promising alternative that can replace the traditional error-prone, contact-based methods. Acoustic sound pressure and particle velocity measurements capture the directional fault signature of the mechanical defects in electric motors, and a one-dimensional convolutional neural networks (1D-CNNs) approach is proposed to process raw sensing data and eliminate the need for manual feature extraction. An experimental case study is performed to test the proposed 1D-CNN based fault classification on three different mechanically faulty electric motors across a variety of speeds. The results from acoustic pressure and particle velocity signals are compared against those from accelerometer signals. The experimental study confirms the feasibility of the proposed 1D-CNN on acoustic signals to be an excellent replacement for contact-based methods when assessing and classifying the machine fault condition. © 2025 Institute of Noise Control Engineering.more » « less
-
null (Ed.)Modular soft robots combine the strengths of two traditionally separate areas of robotics. As modular robots, they can show robustness to individual failure and reconfigurability; as soft robots, they can deform and undergo large shape changes in order to adapt to their environment, and have inherent human safety. However, for sensing and communication these robots also combine the challenges of both: they require solutions that are scalable (low cost and complexity) and efficient (low power) to enable collectives of large numbers of robots, and these solutions must also be able to interface with the high extension ratio elastic bodies of soft robots. In this work, we seek to address these challenges using acoustic signals produced by piezoelectric surface transducers that are cheap, simple, and low power, and that not only integrate with but also leverage the elastic robot skins for signal transmission. Importantly, to further increase scalability, the transducers exhibit multi-functionality made possible by a relatively flat frequency response across the audible and ultrasonic ranges. With minimal hardware, they enable directional contact-based communication, audible-range communication at a distance, and exteroceptive sensing. We demonstrate a subset of the decentralized collective behaviors that these functions make possible with multi-robot hardware implementations. The use of acoustic waves in this domain is shown to provide distinct advantages over existing solutions.more » « less
An official website of the United States government
