skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on September 12, 2026

Title: A spatial hypergraph model to smoothly interpolate between pairwise graphs and hypergraphs to study higher-order structures
We introduce a spatial graph and hypergraph model that smoothly interpolates between a graph with purely pairwise edges and a graph where all connections are in large hyperedges. The key component is a spatial clustering resolution parameter that varies between assigning all the vertices in a spatial region to individual clusters, resulting in the pairwise case, to assigning all the vertices in a spatial region to a single cluster, which results in the large hyperedge case. A key component of this model is that the spatial structure is invariant to the choice of hyperedges. Consequently, this model enables us to study clustering coefficients, graph diffusion, and epidemic spread and how their behavior changes as a function of the higher-order structure in the network with a fixed spatial substrate. We hope that our model will find future uses to distill or explain other behaviors in higher-order networks.  more » « less
Award ID(s):
2007481
PAR ID:
10657840
Author(s) / Creator(s):
; ;
Editor(s):
Saxena, Akrati
Publisher / Repository:
PLOS
Date Published:
Journal Name:
PLOS Complex Systems
Volume:
2
Issue:
9
ISSN:
2837-8830
Page Range / eLocation ID:
e0000066
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We demonstrate a spatial hypergraph model that allows us to vary the amount of higher-order structure in the generated hypergraph. Specifically, we can vary from a model that is a pure pairwise graph into a model that is almost a pure hypergraph. We use this spatial hypergraph model to study higher-order effects in epidemic spread. We use a susceptible-infected-recovered-susceptible (SIRS) epidemic model designed to mimic the spread of an airborne pathogen. We study three types of airborne effects that emulate airborne dilution effects. For the scenario of linear dilution, which roughly corresponds to constant ventilation per person as required in many building codes, we see essentially no impact from introducing small hyperedges up to size 15 whereas we do see effects when the hyperedge set is dominated by large hyperedges. Specifically, we track the mean infections after the SIRS epidemic has run for a while so it is in a ?steady state? and find the mean is higher in the large hyperedge regime whereas it is unchanged from pairwise to small hyperedge regime. 
    more » « less
  2. Sendiña-Nadal, Irene (Ed.)
    Local graph clustering is an important machine learning task that aims to find a well-connected cluster near a set of seed nodes. Recent results have revealed that incorporating higher order information significantly enhances the results of graph clustering techniques. The majority of existing research in this area focuses on spectral graph theory-based techniques. However, an alternative perspective on local graph clustering arises from using max-flow and min-cut on the objectives, which offer distinctly different guarantees. For instance, a new method called capacity releasing diffusion (CRD) was recently proposed and shown to preserve local structure around the seeds better than spectral methods. The method was also the first local clustering technique that is not subject to the quadratic Cheeger inequality by assuming a good cluster near the seed nodes. In this paper, we propose a local hypergraph clustering technique called hypergraph CRD (HG-CRD) by extending the CRD process to cluster based on higher order patterns, encoded as hyperedges of a hypergraph. Moreover, we theoretically show that HG-CRD gives results about a quantity called motif conductance, rather than a biased version used in previous experiments. Experimental results on synthetic datasets and real world graphs show that HG-CRD enhances the clustering quality. 
    more » « less
  3. Graph clustering is a fundamental problem in social network analysis, the goal of which is to group vertices of a graph into a series of densely knitted clusters with each cluster well separated from all the others. Classical graph clustering methods take advantage of the graph topology to model and quantify vertex proximity. With the proliferation of rich graph contents, such as user profiles in social networks, and gene annotations in protein interaction networks, it is essential to consider both the structure and content information of graphs for high-quality graph clustering. In this paper, we propose a graph embedding approach to clustering content-enriched graphs. The key idea is to embed each vertex of a graph into a continuous vector space where the localized structural and attributive information of vertices can be encoded in a unified, latent representation. Specifically, we quantify vertex-wise attribute proximity into edge weights, and employ truncated, attribute-aware random walks to learn the latent representations for vertices. We evaluate our attribute-aware graph embedding method in real-world attributed graphs, and the results demonstrate its effectiveness in comparison with state-of-the-art algorithms. 
    more » « less
  4. Abstract With the aim of analyzing large-sized multidimensional single-cell datasets, we are describing a method for Cosine-based Tanimoto similarity-refined graph for community detection using Leiden’s algorithm (CosTaL). As a graph-based clustering method, CosTaL transforms the cells with high-dimensional features into a weighted k-nearest-neighbor (kNN) graph. The cells are represented by the vertices of the graph, while an edge between two vertices in the graph represents the close relatedness between the two cells. Specifically, CosTaL builds an exact kNN graph using cosine similarity and uses the Tanimoto coefficient as the refining strategy to re-weight the edges in order to improve the effectiveness of clustering. We demonstrate that CosTaL generally achieves equivalent or higher effectiveness scores on seven benchmark cytometry datasets and six single-cell RNA-sequencing datasets using six different evaluation metrics, compared with other state-of-the-art graph-based clustering methods, including PhenoGraph, Scanpy and PARC. As indicated by the combined evaluation metrics, Costal has high efficiency with small datasets and acceptable scalability for large datasets, which is beneficial for large-scale analysis. 
    more » « less
  5. Chan, Timothy; Fischer, Johannes; Iacono, John; Herman, Grzegorz (Ed.)
    We consider hypergraph network design problems where the goal is to construct a hypergraph that satisfies certain connectivity requirements. For graph network design problems where the goal is to construct a graph that satisfies certain connectivity requirements, the number of edges in every feasible solution is at most quadratic in the number of vertices. In contrast, for hypergraph network design problems, we might have feasible solutions in which the number of hyperedges is exponential in the number of vertices. This presents an additional technical challenge in hypergraph network design problems compared to graph network design problems: in order to solve the problem in polynomial time, we first need to show that there exists a feasible solution in which the number of hyperedges is polynomial in the input size. The central theme of this work is to overcome this additional technical challenge for certain hypergraph network design problems. We show that these hypergraph network design problems admit solutions in which the number of hyperedges is polynomial in the number of vertices and moreover, can be solved in strongly polynomial time. Our work improves on the previous fastest pseudo-polynomial run-time for these problems. As applications of our results, we derive the first strongly polynomial time algorithms for (i) degree-specified hypergraph connectivity augmentation using hyperedges and (ii) degree-specified hypergraph node-to-area connectivity augmentation using hyperedges. 
    more » « less