Abstract While data-driven approaches demonstrate great potential in atmospheric modeling and weather forecasting, ocean modeling poses distinct challenges due to complex bathymetry, land, vertical structure, and flow non-linearity. This study introduces OceanNet, a principled neural operator-based digital twin for regional sea-suface height emulation. OceanNet uses a Fourier neural operator and predictor-evaluate-corrector integration scheme to mitigate autoregressive error growth and enhance stability over extended time scales. A spectral regularizer counteracts spectral bias at smaller scales. OceanNet is applied to the northwest Atlantic Ocean western boundary current (the Gulf Stream), focusing on the task of seasonal prediction for Loop Current eddies and the Gulf Stream meander. Trained using historical sea surface height (SSH) data, OceanNet demonstrates competitive forecast skill compared to a state-of-the-art dynamical ocean model forecast, reducing computation by 500,000 times. These accomplishments demonstrate initial steps for physics-inspired deep neural operators as cost-effective alternatives to high-resolution numerical ocean models.
more »
« less
This content will become publicly available on September 1, 2026
Simultaneous Emulation and Downscaling With Physically Consistent Deep Learning‐Based Regional Ocean Emulators
Abstract Building upon recent advancements in AI‐driven atmospheric emulation, we present a novel framework for AI‐based ocean emulation, downscaling, and bias correction, with a specific focus on high‐resolution modeling of the regional ocean in the Gulf of Mexico. Emulating regional ocean dynamics poses distinct challenges due to intricate bathymetry, complex lateral boundary conditions, and inherent limitations of deep learning models, including instability and the potential for hallucinations. In this study, we introduce a deep learning framework that autoregressively integrates ocean surface variables at 8 km spatial resolution over the Gulf of Mexico, maintaining physical consistency over decadal time scales. Simultaneously, the framework downscales and bias‐corrects the outputs to 4 km resolution using a physics‐informed generative model. Our approach demonstrates short‐term predictive skill comparable to high‐resolution physics‐based simulations, while also accurately capturing long‐term statistical properties, including temporal mean and variability.
more »
« less
- Award ID(s):
- 2425667
- PAR ID:
- 10658209
- Publisher / Repository:
- Wiley
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Machine Learning and Computation
- Volume:
- 2
- Issue:
- 3
- ISSN:
- 2993-5210
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The Lagrangian tracking approach is often used in numerical modeling (NM) to simulate and predict the movement of marine particles such as plastic, oil spills, and floating wreckage. The uncertainties in NM reduce prediction accuracy as a result of the coarse temporal and spatial resolution, along with waves, winds, and currents. From 29 August to 22 December 2020, the United States Defense Advanced Research Projects Agency's Ocean of Things program deployed 422 floating drifters in the Gulf of Mexico, providing an opportunity of using the observed trajectories as ground truth to train Artificial Intelligence (AI) models to correct NM float trajectory predictions. A Regional Ocean Model System (ROMS) and AI Hybrid model was developed to implement AI to correct the ROMS‐predicted 1‐day float trajectories. The AI model is built on a convolutional neural network and Gated Recurrent Unit. The results of the ROMS‐AI Hybrid model show that 82.0% of the trajectory predictions were improved at the 24 hr, with the corresponding overall mean separation error decreasing by 11.82 km, from 20.56 to 8.74 km, which is a 57% improvement, and the error growth rate decreasing from 5.06 km per 6 hr to 1.95 km per 6 hr. The evident improvement indicates that the ROMS‐AI Hybrid model can correct the ROMS simulation to improve the 1‐day prediction of the float trajectories and shows great potential to predict the cluster of the floats.more » « less
-
Abstract Circulation in the Gulf of Mexico is dominated by the Loop Current and associated mesoscale eddies. These mesoscale eddies pose a safety risk to offshore energy production and potential dispersal of large-scale pollutants like oil. We use a data-driven, physics-informed, and numerically consistent deep learning–based ocean emulator called OceanNet to generate a 120-day forecast of the sea surface height (SSH) in the eastern Gulf of Mexico. OceanNet uses a new dataset of high-resolution data assimilative ocean reanalysis (1993–2022) as input. This model is trained using years 1993–2018 and evaluated on four eddies during years 2019–21. For comparison, we use a state-of-the-art numerical ocean model to generate a dynamical model prediction initialized every 5 days from 27 April 2019 to 1 April 2020 (during eddies Sverdrup and Thor) using persistent forcing and boundary conditions. The dynamical model takes seven wall-clock days to run, whereas OceanNet runs in minutes. Edges of Loop Current eddies (LCEs) pose the most potent risk to offshore energy operations and pollutant dispersal due to strong water velocities. Therefore, most of the analysis focuses on edge accuracy, quantified by the modified Hausdorff distance. The edge of the LCEs is defined by the 17-cm sea surface height contour, which generally coincides with the strongest water velocity. The OceanNet prediction outperforms both persistence and the dynamical model prediction. Overall, this new ocean emulator provides a promising new approach to generate seasonal forecasts of LCEs and generates large model ensembles efficiently to quantify forecast uncertainty that is long needed by scientists and decision-makers for offshore operations. Significance StatementCirculation in the Gulf of Mexico (GoM) is dominated by the energetic Loop Current and associated mesoscale eddies (typically 150–400 km in diameter). As these eddies propagate westward through the Gulf, they pose a safety risk to offshore energy production and potential large-scale pollutant dispersal. We used ocean model output (1993–2022) to train a data-driven ocean emulator called OceanNet that generates a seasonal (up to 120 day) prediction of sea surface height (SSH) in the eastern GoM. For comparison, a simple dynamical model prediction is also evaluated. OceanNet’s performance is assessed with a focus on edge accuracy, the most potent risk to offshore energy operations and pollutant dispersal. Overall, OceanNet performs well for a seasonal forecast and shows great potential for further development.more » « less
-
Abstract Over the Texas-Louisiana Shelf in the Northern Gulf of Mexico, the eutrophic, fresh Mississippi/Atchafalaya river plume isolates saltier waters below, supporting the formation of bottom hypoxia in summer. The plume also generates strong density fronts, features of the circulation that are known pathways for the exchange of water between the ocean surface and the deep. Using high-resolution ocean observations and numerical simulations, we demonstrate how the summer land-sea breeze generates rapid vertical exchange at the plume fronts. We show that the interaction between the land-sea breeze and the fronts leads to convergence/divergence in the surface mixed layer, which further facilitates a slantwise circulation that subducts surface water along isopycnals into the interior and upwells bottom waters to the surface. This process causes significant vertical displacements of water parcels and creates a ventilation pathway for the bottom water in the northern Gulf. The ventilation of bottom water can bypass the stratification barrier associated with the Mississippi/Atchafalaya river plume and might impact the dynamics of the region’s dead zone.more » « less
-
Mechanisms that generate subseasonal (1-2 months) events of sea level rise along the western Gulf Coast are investigated using the data collected by a dense tide gauge network: Texas Coastal Ocean Observation Network (TCOON) and National Water Level Observation Network (NWLON), satellite altimetry, and high-resolution (0.08°) ocean reanalysis product. In particular, the role of Loop Current and eddy shedding in generating the extreme sea level rise along the coast is emphasized. The time series of sea level anomalies along the western portion of the Gulf Coast derived from the TCOON and NWLON tide gauge data indicate that a subseasonal sea level rise which exceeds 15 cm is observed once in every 2-5 years. Based on the analysis of satellite altimetry data and high-resolution ocean reanalysis product, it is found that most of such extreme subseasonal events are originated from the anti-cyclonic (warm-core) eddy separated from the Loop Current which propagates westward. A prominent sea level rise is generated when the eddy reaches the western Gulf Coast, which occurs about 6-8 months after the formation of strong anti-cyclonic eddy in the central Gulf of Mexico. The results demonstrate that the accurate prediction of subseasonal sea level rise events along the Gulf Coast with the lead time of several months require a full description of large-scale ocean dynamical processes in the entire Gulf of Mexico including the characteristics of eddies separated from the Loop Current.more » « less
An official website of the United States government
