skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on April 10, 2026

Title: Eocene sequences and forward modeling of the New Jersey coastal plain, U.S.A.: changing depositional styles in response to climate and sea level
ABSTRACT We map the spatial and temporal distribution and depositional environments of Eocene sequences and formations in the New Jersey Coastal Plain, USA, using an array of coreholes and gamma logs. On this passive margin, Eocene depositional systems reflect a change from prograding earliest Eocene mud lobes, to early to middle Eocene hemipelagic ramp, and finally to late middle Eocene prograding sandy sequences. The Marlboro Clay, containing the Paleocene–Eocene Thermal Maximum (PETM), was deposited as prograding fluid mud during times of high global temperatures; it is found in northern and southern lobes but is absent from the central coastal plain. Lower and lower middle Eocene sediments consist of carbonate-rich clays (“marls”) deposited in middle to outer neritic (50–150 m) paleodepths on a hemipelagic ramp during a peak in global mean sea level. Exceptionally deep early Eocene deep water depths compared to other regions are attributed to mantle dynamic topography. The upper middle to upper Eocene consists of three prograding lithologic units found in parallel belts with coarse-grained sediments in the most updip positions and fine-grained sediments found in the most downdip positions; the lithologic units transgress time and sequences. Comparison of the timing of sea-level falls constructed using oxygen isotopes with New Jersey Eocene sequence boundaries shows a correlation between sequences boundaries and global mean sea-level falls controlled by ice-volume changes, even in the purportedly ice-free early Eocene. We date the change from ramp to prograding sequences to the late middle Eocene (ca. 41.5 Ma). We use a forward stratigraphic model to evaluate the primary controls influencing changing styles of sedimentation on the Eocene New Jersey margin. Our forward stratigraphic model shows that the appearance of prograding sands and silts in the middle Eocene is a response primarily to changes in siliciclastic input, presumably due to climate or tectonics in the hinterland. Our study of the New Jersey Eocene shows that by integrating stratigraphic and chronostratigraphic data with an independent estimate of global mean geocentric sea level, our forward model was able to disentangle the effects of sea level and sediment supply on the stratigraphic record.  more » « less
Award ID(s):
2438116
PAR ID:
10658350
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Society for Sedimentary Geology
Date Published:
Journal Name:
Journal of Sedimentary Research
Volume:
95
Issue:
2
ISSN:
1527-1404
Page Range / eLocation ID:
383 to 404
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We review scientific ocean drilling of the New Jersey passive continental margin and the success of Integrated Ocean Drilling Program (IODP1) Expedition 313 in addressing long-standing, fundamental issues of sequence stratigraphy, sea-level change, and resources. The New Jersey margin was targeted for study by several generations of ocean drilling because of its thick, prograding Oligocene to Quaternary sequences bounded by unconformities. Coring and logging on the onshore coastal plain (Ocean Drilling Program [ODP] Legs 150Xh ttp://www-odp.tamu.edu/publications/citations/cite150X.html and 174AX), outer continental shelf (Leg 174A), and continental slope and rise (Legs 95, 150, and 174A) provided a chronology of sea-level lowerings but did not sample facies needed to evaluate Miocene sea-level amplitudes. Expedition 313 used a Mission Specific Platform (L/B Kayd) to drill on the shallow continental shelf, recover critical Miocene facies, particularly on clinoform foresets, and capture the full amplitudes of relative sea-level changes. Expedition 313 overcame challenging borehole conditions and recovered a total of 1311 m of core at three sites (81 % recovery) that: (1) correlated difficult-to-date nearshore-shelf facies to the time scale with resolution better than ±0.5 million years (Myr); (2) tested and confirmed that sequence boundaries are a primary cause of seismic reflections on siliciclastic shelves; (3) tested sequence stratigraphic models with core-log-seismic integration; and (4) provided a record of paleodepth changes through time that constrained amplitudes of Miocene sea-level change, including the influence of mantle dynamic topography. The New Jersey relative sea-level estimates are similar to those obtained using stable isotopes and Mg/Ca paleothermometry, showing that GMGSL (“eustasy”) varied with 10–60 m scale amplitudes on the Myr scale. Drilling beneath the shallow continental shelf also identified groundwater sources, including seawater, deepsourced brines, and meteoric fresh water, that represent potential resources for future generations. Studies of this margin have implications for future subsurface storage of supercritical CO2 and geotechnical issues relating to the location of offshore wind infrastructure. Expedition 313 demonstrated the feasibility of continuously recovering and logging strata in shallow water, providing constraints on sea level, sequences, hydrogeology, and resources. 
    more » « less
  2. The Ediacaran Gametrail Formation of northwestern Canada chronicles the evolution of a complex carbonate ramp system in response to fluctuations in relative sea level and regional tectonic subsidence alongside exceptional global change associated with the Shuram carbon isotope excursion (CIE). Here, we use extensive outcrop exposures of the Gametrail Formation in the Wernecke Mountains of Yukon, Canada, to construct a shelf-slope transect across the Shuram CIE. Twelve stratigraphic sections of the Gametrail Formation are combined with geological mapping and a suite of geochemical analyses to develop an integrated litho-, chemo-, and sequence stratigraphic model for these strata. In the more proximal Corn/Goz Creek region, the Gametrail Formation represents a storm-dominated inner to outer ramp depositional setting, while slope depositional environments in the Nadaleen River region are dominated by hemipelagic sedimentation, turbidites, and debris flows. The magnitude of the Shuram CIE is largest in slope limestones which underwent sediment-buffered diagenesis, while the CIE is notably smaller in the inner-outer ramp dolostones which experienced fluid-buffered diagenesis. Our regional mapping identified a distinct structural panel within the shelf-slope transect that was transported ~30 km via strike-slip motion during the Mesozoic–Cenozoic Cordilleran orogeny. One location in this transported structural block contains a stromatolite reef complex with extremely negative carbon isotope values down to ~ -30‰, while the other location contains an overthickened ooid shoal complex that does not preserve the characteristic negative CIE associated with the Shuram event. These deviations from the usual expression of the Shuram CIE along the shelf-slope transect in the Wernecke Mountains, and elsewhere globally, provide useful examples for how local tectonic, stratigraphic, and/or geochemical complexities can result in unusually large or completely absent expressions of a globally recognized CIE. 
    more » « less
  3. null (Ed.)
    International Ocean Discovery Program (IODP) Expedition 359 is designed to address sea level, currents, and monsoon evolution in the Indian Ocean. Seven proposed drill sites are located in the Maldives and one site is located in the Kerala-Konkan Basin on the western Indian continental margin. The Maldives carbonate edifice bears a unique and mostly unread Indian Ocean archive of the evolving Cenozoic icehouse world. It has great potential to serve as a key area for better understanding the effects of this global evolution in the Indo-Pacific realm. Based mainly on seismic stratigraphic data, a model for the evolution of this carbonate bank has been developed, showing how changing sea level and ocean current patterns shaped the bank geometries. A dramatic shift in development of the carbonate edifice from a sea level–controlled to a predominantly current-controlled system is thought to be directly linked to the evolving Indian monsoon. Fluctuations in relative sea level control the stacking pattern of depositional sequences during the lower to middle Miocene. This phase was followed by a two-fold configuration of bank development: bank growth continued in some parts of the edifice, whereas in other places, banks drowned. Drowning steps seem to coincide with onset and intensification of the monsoon-related current system and the deposition of giant sediment drifts. The shapes of drowned banks attest to the occurrence of these strong currents. The drift sediments, characterized by off-lapping geometries, formed large-scale prograding complexes, filling the Maldives Inner Sea basin. Because the strong current swept most of the sediment around the atolls away, relict banks did not prograde, and steady subsidence was balanced by aggradation of the atolls, which are still active today. One important outcome of Expedition 359 is ground-truthing the hypothesis that the dramatic, pronounced change in the style of the sedimentary carbonate sequence stacking was caused by a combination of relative sea level fluctuations and ocean current system changes. Answering this question will directly improve our knowledge on processes shaping carbonate platforms and their stratigraphic records. Our findings would be clearly applicable to other Tertiary carbonate platforms in the Indo-Pacific region and to numerous others throughout the geological record. In addition, the targeted successions will allow calibration of the Neogene oceanic δ13C record with data from a carbonate platform to platform-margin series. This is becoming important, as such records are the only type that exist in deep time. Drilling will provide the cores required for reconstructing changing current systems through time that are directly related to the evolution of the Indian monsoon. As such, the drift deposits will provide a continuous record of Indian monsoon development in the region of the Maldives. These data will be valuable for a comparison with proposed Site KK-03B in the Kerala-Konkan Basin (see Geological setting of the Kerala-Konkan Basin, below) and other monsoon-dedicated IODP expeditions. The proposed site in the Kerala-Konkan Basin provides the opportunity to recover colocated oceanic and terrestrial records for monsoon and premonsoon Cenozoic climate in the eastern Arabian Sea and India, respectively. The site is located on a bathymetric high immediately north of the Chagos-Laccadive Ridge and is therefore not affected by strong tectonic, glacial, and nonmonsoon climatic processes that affect fan sites fed by Himalayan rivers. The cores are expected to consist of a continuous sequence of foraminifer-rich pelagic sediments with subordinate cyclical siliciclastic inputs of fluvial origin from the Indian Peninsula for the Neogene and a continuous paleoclimate record at orbital timescales into the Eocene and possibly the Paleocene. 
    more » « less
  4. The Cambrian Tonto Group of the Grand Canyon was used by Edwin McKee in 1945 to make an insightful visual representation of how sedimentary facies record transgression across a craton—a common conceptual framework still used in geologic education. Although the tenets of McKee’s facies diagram persist, the integration of new stratigraphy, depositional models, paleontology, biostratigraphy, and other data is refining the underlying dynamics of this cratonic transgression. Instead of McKee’s interpretation of one major transgression with only minor regressions, there are at least five stratigraphic sequences, of which the lower three are separated by disconformities. These hiatal surfaces likely represent erosion of previously deposited Cambrian sediments that were laid down on the tropical, pre-vegetated landscape. Rather than being fully marine in origin, these sequences were formed by a mosaic of depositional environments including braided coastal plain, eolian, marginal marine, and various shallow marine environments. McKee, not having the insights of sequence stratigraphy and plate tectonics, concluded that the preservation of these sediments were due to predepositional topography and subsidence of the “geosyncline.” Our modern interpretation is that accommodation space was a result of eustasy and differential subsidence on the continental margin. Our modified depositional model provides a more effective teaching tool for fundamentals and nuances of modern stratigraphic thinking, using the Tonto Group as a still-influential type location for understanding transgressive successions. 
    more » « less
  5. Abstract Oscillations in ice sheet extent during early and middle Miocene are intermittently preserved in the sedimentary record from the Antarctic continental shelf, with widespread erosion occurring during major ice sheet advances, and open marine deposition during times of ice sheet retreat. Data from seismic reflection surveys and drill sites from Deep Sea Drilling Project Leg 28 and International Ocean Discovery Program Expedition 374, located across the present-day middle continental shelf of the central Ross Sea (Antarctica), indicate the presence of expanded early to middle Miocene sedimentary sections. These include the Miocene climate optimum (MCO ca. 17–14.6 Ma) and the middle Miocene climate transition (MMCT ca. 14.6–13.9 Ma). Here, we correlate drill core records, wireline logs and reflection seismic data to elucidate the depositional architecture of the continental shelf and reconstruct the evolution and variability of dynamic ice sheets in the Ross Sea during the Miocene. Drill-site data are used to constrain seismic isopach maps that document the evolution of different ice sheets and ice caps which influenced sedimentary processes in the Ross Sea through the early to middle Miocene. In the early Miocene, periods of localized advance of the ice margin are revealed by the formation of thick sediment wedges prograding into the basins. At this time, morainal bank complexes are distinguished along the basin margins suggesting sediment supply derived from marine-terminating glaciers. During the MCO, biosiliceous-bearing sediments are regionally mapped within the depocenters of the major sedimentary basin across the Ross Sea, indicative of widespread open marine deposition with reduced glacimarine influence. At the MMCT, a distinct erosive surface is interpreted as representing large-scale marine-based ice sheet advance over most of the Ross Sea paleo-continental shelf. The regional mapping of the seismic stratigraphic architecture and its correlation to drilling data indicate a regional transition through the Miocene from growth of ice caps and inland ice sheets with marine-terminating margins, to widespread marine-based ice sheets extending across the outer continental shelf in the Ross Sea. 
    more » « less