skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on May 11, 2027

Title: Understanding crack tip pH evolution during corrosion fatigue in 2xxx and 7xxx aluminum alloys as a function of fatigue loading frequency
PhD Dissertation of Gabriella Montiel from The Ohio State University who was advised by Prof Jenifer Locke  more » « less
Award ID(s):
1943870
PAR ID:
10658431
Author(s) / Creator(s):
Publisher / Repository:
OhioLINK
Date Published:
Format(s):
Medium: X
Institution:
The Ohio State University
Sponsoring Org:
National Science Foundation
More Like this
  1. The emerging applications of hydrogels in devices and machines require hydrogels to maintain robustness under cyclic mechanical loads. Whereas hydrogels have been made tough to resist fracture under a single cycle of mechanical load, these toughened gels still suffer from fatigue fracture under multiple cycles of loads. The reported fatigue threshold for synthetic hydrogels is on the order of 1 to 100 J/m 2 . We propose that designing anti-fatigue-fracture hydrogels requires making the fatigue crack encounter and fracture objects with energies per unit area much higher than that for fracturing a single layer of polymer chains. We demonstrate that the controlled introduction of crystallinity in hydrogels can substantially enhance their anti-fatigue-fracture properties. The fatigue threshold of polyvinyl alcohol (PVA) with a crystallinity of 18.9 weight % in the swollen state can exceed 1000 J/m 2 . 
    more » « less
  2. Mechanical failure of biological nanostructures due to sustained force application has been studied in great detail. In contrast, fatigue failure arising from repeated application of subcritical stresses has received little attention despite its prominent role in engineering and potentially biology. Here, paclitaxel-stabilized microtubules are up to 256 times bent into sinusoidal shapes of varying wavelength and the frequency of breaking events are observed. These experiments allow the calculation of fatigue life parameters for microtubules. Repeated buckling due to 12.5% compression–equal to the compression level experienced by microtubules in contracting cardiomyocytes – results in failure after in average 5 million cycles, whereas at 20.0% compression failure occurs after in average one thousand cycles. The fatigue strength (Basquin) exponent B is estimated as − 0.054±0.009. 
    more » « less