skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on November 18, 2026

Title: Synthetic Rewiring of Virus-like Particles via Circular Permutation Enables Modular Peptide Display and Protein Encapsulation
Virus-like particles (VLPs) are self-assembling nanoparticles derived from viruses with potential as scaffolds for myriad applications. They are also excellent testbeds for engineering protein superstructures. Engineers often employ techniques such as amino acid substitutions and insertions/deletions. Yet evolution also utilizes circular permutation, a powerful natural strategy that has not been fully explored in engineering self-assembling protein nanoparticles. Here, we demonstrate this technique using the MS2 VLP as a model self-assembling, proteinaceous nanoparticle. We constructed a comprehensive circular permutation library of the fused MS2 coat protein dimer construct. The strategy revealed terminal locations, validated via cryo-electron microscopy, that enabled C-terminal peptide tagging and led to a protein encapsulation strategy via covalent bonding – a feature the native coat protein does not permit. Our systematic study demonstrates the power of circular permutation for engineering features as well as quantitatively and systematically exploring VLP structural determinants.  more » « less
Award ID(s):
2043973
PAR ID:
10658836
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
ACS Nano
Date Published:
Journal Name:
ACS Nano
Volume:
19
Issue:
45
ISSN:
1936-0851
Page Range / eLocation ID:
39168 to 39180
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Virus-like particles (VLPs) are promising scaffolds for biomaterials as well as diagnostic and therapeutic applications. However, there are some key challenges to be solved, such as the ability to engineer alternate sizes for varied use cases. To this end, we created a library of MS2 VLP variants at two key residues in the coat protein which have been implicated as important to controlling VLP size and geometry. By adapting a method for systematic mutagenesis coupled with size-based selections and high-throughput sequencing as a readout, we developed a quantitative assessment of two residues in MS2 coat protein that govern the size shift in MS2 VLPs. We then applied the strategy to the equivalent residues in Qβ VLPs, an MS2 homolog, and demonstrate that the analogous pair of residues are also able to impact Qβ VLP size and shape. These results underscore the power of fitness landscapes in identifying critical features for assembly. 
    more » « less
  2. Tessier, Peter Kane (Ed.)
    Virus-like particles (VLPs) are self-assembling protein nanoparticles that have great promise as vectors for drug delivery. VLPs are derived from viruses but retain none of their infection or replication capabilities. These protein particles have defined surface chemistries, uniform sizes, and stability properties that make them attractive starting points for drug-delivery scaffolds. Here, we review recent advances in tailoring VLPs for drug-delivery applications, including VLP platform engineering approaches as well as methods for cargo loading, activation, and release. Finally, we highlight several successes using VLPs for drug delivery in model systems. 
    more » « less
  3. Structures in the 5′ untranslated regions (UTRs) of mRNAs can physically modulate translation efficiency by impeding the scanning ribosome or by sequestering the translational start site. We assessed the impact of stable protein binding in 5′- and 3′-UTRs on translation efficiency by targeting the MS2 coat protein to a reporter RNA via its hairpin recognition site. Translation was assessed from the reporter RNA when coexpressed with MS2 coat proteins of varying affinities for the RNA, and at different expression levels. Binding of high-affinity proteins in the 5′-UTR hindered translation, whereas no effect was observed when the coat protein was targeted to the 3′-UTR. Inhibition of translation increased with coat protein concentration and affinity, reaching a maximum of 50%–70%. MS2 proteins engineered to bind two reporter mRNA sites had a stronger effect than those binding a single site. Our findings demonstrate that protein binding in an mRNA 5′-UTR physically impedes translation, with the effect governed by affinity, concentration, and sterics. 
    more » « less
  4. Some RNA viruses package their genomes with extraordinary selectivity, assembling protein capsids around their own viral RNA while excluding nearly all host RNA. How the assembling proteins distinguish viral RNA from host RNA is not fully understood, but RNA structure is thought to play a key role. To test this idea, we perform in-cellulo packaging experiments using bacteriophage MS2 coat proteins and a variety of RNA molecules inEscherichia coli. In each experiment, plasmid-derived RNA molecules with a specified sequence compete against the cellular transcriptome for packaging by plasmid-derived coat proteins. Following this competition, we quantify the total amount and relative composition of the packaged RNA using electron microscopy, interferometric scattering microscopy, and high-throughput sequencing. By systematically varying the input RNA sequence and measuring changes in packaging outcomes, we are able to directly test competing models of selective packaging. Our results rule out a longstanding model in which selective packaging requires the well-known translational repressor (TR) stem-loop, and instead support more recent models in which selectivity emerges from the collective interactions of multiple coat proteins and multiple stem-loops distributed across the RNA molecule. These findings establish a framework for studying and understanding selective packaging in a range of natural viruses and virus-like particles, and lay the groundwork for engineering synthetic systems that package specific RNA cargoes. 
    more » « less
  5. Self-assembly is widely used by biological systems to build functional nanostructures, such as the protein capsids of RNA viruses. But because assembly is a collective phenomenon involving many weakly interacting subunits and a broad range of timescales, measurements of the assembly pathways have been elusive. We use interferometric scattering microscopy to measure the assembly kinetics of individual MS2 bacteriophage capsids around MS2 RNA. By recording how many coat proteins bind to each of many individual RNA strands, we find that assembly proceeds by nucleation followed by monotonic growth. Our measurements reveal the assembly pathways in quantitative detail and also show their failure modes. We use these results to critically examine models of the assembly process. 
    more » « less