This content will become publicly available on September 20, 2026
Fault Modeling and Testing of Chiplet-to-Chiplet Interconnects in Fan-out Wafer-Level Packaging *
- Award ID(s):
- 2309822
- PAR ID:
- 10658884
- Publisher / Repository:
- IEEE
- Date Published:
- Page Range / eLocation ID:
- 357 to 366
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Not AvailableModern Artificial Intelligence (AI) workloads demand computing systems with large silicon area to sustain throughput and competitive performance. However, prohibitive manufacturing costs and yield limitations at advanced tech nodes and die-size reaching the reticle limit restrain us from achieving this. With the recent innovations in advanced packaging technologies, chiplet-based architectures have gained significant attention in the AI hardware domain. However, the vast design space of chiplet-based AI accelerator design and the absence of system and package-level co-design methodology make it difficult for the designer to find the optimum design point regarding Power, Performance, Area, and manufacturing Cost (PPAC). This paper presents Chiplet-Gym, a Reinforcement Learning (RL)-based optimization framework to explore the vast design space of chiplet-based AI accelerators, encompassing the resource allocation, placement, and packaging architecture. We analytically model the PPAC of the chiplet-based AI accelerator and integrate it into an OpenAI gym environment to evaluate the design points. We also explore non-RL-based optimization approaches and combine these two approaches to ensure the robustness of the optimizer. The optimizer-suggested design point achieves 1.52× throughput, 0.27× energy, and 0.89× cost of its monolithic counterpart at iso-area.more » « less
-
Generative adversarial networks (GANs) have emerged as a powerful solution for generating synthetic data when the availability of large, labeled training datasets is limited or costly in large-scale machine learning systems. Recent advancements in GAN models have extended their applications across diverse domains, including medicine, robotics, and content synthesis. These advanced GAN models have gained recognition for their excellent accuracy by scaling the model. However, existing accelerators face scalability challenges when dealing with large-scale GAN models. As the size of GAN models increases, the demand for computation and communication resources during inference continues to grow. To address this scalability issue, this article proposes Chiplet-GAN, a chiplet-based accelerator design for GAN inference. Chiplet-GAN enables scalability by adding more chiplets to the system, thereby supporting the scaling of computation capabilities. To handle the increasing communication demand as the system and model scale, a novel interconnection network with adaptive topology and passive/active network links is developed to provide adequate communication support for Chiplet-GAN. Coupled with workload partition and allocation algorithms, Chiplet-GAN reduces execution time and energy consumption for GAN inference workloads as both model and chiplet-system scales. Evaluation results using various GAN models show the effectiveness of Chiplet-GAN. On average, compared to GANAX, SpAtten, and Simba, the Chiplet-GAN reduces execution time and energy consumption by 34% and 21%, respectively. Furthermore, as the system scales for large-scale GAN model inference, Chiplet-GAN achieves reductions in execution time of up to 63% compared to the Simba, a chiplet-based accelerator.more » « less
-
Generative adversarial networks (GANs) have emerged as a powerful solution for generating synthetic data when the availability of large, labeled training datasets is limited or costly in large-scale machine learning systems. Recent advancements in GAN models have extended their applications across diverse domains, including medicine, robotics, and content synthesis. These advanced GAN models have gained recognition for their excellent accuracy by scaling the model. However, existing accelerators face scalability challenges when dealing with large-scale GAN models. As the size of GAN models increases, the demand for computation and communication resources during inference continues to grow. To address this scalability issue, this article proposes Chiplet-GAN, a chiplet-based accelerator design for GAN inference. Chiplet-GAN enables scalability by adding more chiplets to the system, thereby supporting the scaling of computation capabilities. To handle the increasing communication demand as the system and model scale, a novel interconnection network with adaptive topology and passive/active network links is developed to provide adequate communication support for Chiplet-GAN. Coupled with workload partition and allocation algorithms, Chiplet-GAN reduces execution time and energy consumption for GAN inference workloads as both model and chiplet-system scales. Evaluation results using various GAN models show the effectiveness of Chiplet-GAN. On average, compared to GANAX, SpAtten, and Simba, the Chiplet-GAN reduces execution time and energy consumption by 34% and 21%, respectively. Furthermore, as the system scales for large-scale GAN model inference, Chiplet-GAN achieves reductions in execution time of up to 63% compared to the Simba, a chiplet-based accelerator.more » « less
An official website of the United States government
