Proper codon/anticodon pairing within the ribosome necessitates linearity of the transcript. Any structures formed within a messenger RNA (mRNA) must be unwound before the respective codon is interpreted. Linearity, however, is not always the norm; some intricate structures within mRNA are able to exert unique ribosome/mRNA interactions to regulate translation. Intrinsic kinetic and thermal stability in many of these structures are efficient in slowing translation causing pausing of the ribosome. Altered translation kinetics arising from atypical interactions have been shown to affect intersubunit rotation. Here, we employ single-molecule Förster resonance energy transfer (smFRET) to observe changes in intersubunit rotation of the ribosome as it approaches downstream structured nucleic acid. The emergence of the hyperrotated state is critically dependent on the distance between downstream structure and the ribosome, suggesting interactions with the helicase center are allosterically coupled to intersubunit rotation. Further, molecular dynamics (MD) simulations were performed to determine ribosomal protein/mRNA interactions that may play a pivotal role in helicase activity and ultimately unwinding of downstream structure.
more »
« less
Ribosome-induced mRNA pseudoknot interactions visualized by DMS MaP-Seq
Abstract Examining the dynamicity of RNA structure has deepened our understanding of its vast biological functions. Perhaps the protein complex that encounters the most diverse landscape of RNA structure is the ribosome. In translation, the ribosome must linearize countless mRNA conformations for proper protein production. Some RNA structures, however, reliably make up sequences which hinder the ability of the ribosome to maintain its reading frame. The most well-studied of these structures is the RNA pseudoknot. Here, we present an approach utilizing dimethyl sulfate probing with mutational profiling and sequencing (DMS MaP-Seq) to precisely examine RNA unwinding. We employ the method to understand the unfolding of the Sugarcane Yellow Leaf Virus pseudoknot (ScYLVPK). Notably, we find that the helical junction is stabilized in the presence of the ribosome and is contingent upon hydrogen bonding at the 27thresidue of ScYLVPK. Additionally, it is demonstrated that the ribosome destabilizes wildtype ScYLVPKin a manner independent of A/P-site occupancy. Together, these results establish DMS MaP-Seq as a sensitive tool for detecting ribosome-induced RNA conformational changes and reveal specific structural motifs that govern pseudoknot stability during translation.
more »
« less
- Award ID(s):
- 2122902
- PAR ID:
- 10658977
- Publisher / Repository:
- bioRxiv
- Date Published:
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Canonical eukaryotic mRNA translation requires 5′cap recognition by initiation factor 4E (eIF4E). In contrast, many positive-strand RNA virus genomes lack a 5′cap and promote translation by non-canonical mechanisms. Among plant viruses, PTEs are a major class of cap-independent translation enhancers located in/near the 3′UTR that recruit eIF4E to greatly enhance viral translation. Previous work proposed a single form of PTE characterized by a Y-shaped secondary structure with two terminal stem-loops (SL1 and SL2) atop a supporting stem containing a large, G-rich asymmetric loop that forms an essential pseudoknot (PK) involving C/U residues located between SL1 and SL2. We found that PTEs with less than three consecutive cytidylates available for PK formation have an upstream stem-loop that forms a kissing loop interaction with the apical loop of SL2, important for formation/stabilization of PK. PKs found in both subclasses of PTE assume a specific conformation with a hyperreactive guanylate (G*) in SHAPE structure probing, previously found critical for binding eIF4E. While PTE PKs were proposed to be formed by Watson–Crick base-pairing, alternative chemical probing and 3D modeling indicate that the Watson–Crick faces of G* and an adjacent guanylate have high solvent accessibilities. Thus, PTE PKs are likely composed primarily of non-canonical interactions.more » « less
-
Structures in the 5′ untranslated regions (UTRs) of mRNAs can physically modulate translation efficiency by impeding the scanning ribosome or by sequestering the translational start site. We assessed the impact of stable protein binding in 5′- and 3′-UTRs on translation efficiency by targeting the MS2 coat protein to a reporter RNA via its hairpin recognition site. Translation was assessed from the reporter RNA when coexpressed with MS2 coat proteins of varying affinities for the RNA, and at different expression levels. Binding of high-affinity proteins in the 5′-UTR hindered translation, whereas no effect was observed when the coat protein was targeted to the 3′-UTR. Inhibition of translation increased with coat protein concentration and affinity, reaching a maximum of 50%–70%. MS2 proteins engineered to bind two reporter mRNA sites had a stronger effect than those binding a single site. Our findings demonstrate that protein binding in an mRNA 5′-UTR physically impedes translation, with the effect governed by affinity, concentration, and sterics.more » « less
-
Abstract SARS-CoV-2 depends on −1 programmed ribosomal frameshifting (−1 PRF) to express proteins essential for its replication. The RNA pseudoknot stimulating −1 PRF is thus an attractive drug target. However, the structural models of this pseudoknot obtained from cryo-EM and crystallography differ in some important features, leaving the pseudoknot structure unclear. We measured the solution structure of the pseudoknot using small-angle X-ray scattering (SAXS). The measured profile did not agree with profiles computed from the previously solved structures. Beginning with each of these solved structures, we used the SAXS data to direct all atom molecular dynamics (MD) simulations to improve the agreement in profiles. In all cases, this refinement resulted in a bent conformation that more closely resembled the cryo-EM structures than the crystal structure. Applying the same approach to a point mutant abolishing −1 PRF revealed a notably more bent structure with reoriented helices. This work clarifies the dynamic structures of the SARS-CoV-2 pseudoknot in solution.more » « less
-
Sigma factors are an important class of bacterial transcription factors that lend specificity to RNA polymerases by binding to distinct promoter elements for genes in their regulons. Here we show that activation of the general stress sigma factor, σ B , in Bacillus subtilis paradoxically leads to dramatic induction of translation for a subset of its regulon genes. These genes are translationally repressed when transcribed by the housekeeping sigma factor, σ A , owing to extended RNA secondary structures as determined in vivo using DMS-MaPseq. Transcription from σ B -dependent promoters excludes the secondary structures and activates translation, leading to dual induction. Translation efficiencies between σ B - and σ A -dependent RNA isoforms can vary by up to 100-fold, which in multiple cases exceeds the magnitude of transcriptional induction. These results highlight the role of long-range RNA folding in modulating translation and demonstrate that a transcription factor can regulate protein synthesis beyond its effects on transcript levels.more » « less
An official website of the United States government

