skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on May 1, 2026

Title: Forecasting the Range of Possible Human Hand Movement in Consumer Electronics Disassembly Using Machine Learning
Abstract Robotic technology can benefit disassembly operations by reducing human operators' workload and assisting them with handling hazardous materials. Safety consideration and prediction of the human movement are priorities in close collaboration between humans and robots. The point-by-point forecasting of human hand motion, which forecasts one point at each time, does not provide enough information on human movement due to errors between the actual movement and the predicted value. This study provides a range of possible hand movements to increase safety. It applies three machine learning techniques, including long short-term memory (LSTM), gated recurrent unit (GRU), and Bayesian neural network (BNN) combined with bagging and Monte Carlo dropout (MCD), namely, LSTM-bagging, GRU-bagging, and BNN-MCD to predict the possible movement range. The study uses an inertial measurement unit (IMU) dataset collected from the disassembly of desktop computers by several participants to show the application of the proposed method.  more » « less
Award ID(s):
2026276
PAR ID:
10659109
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
ASME
Date Published:
Journal Name:
Journal of Computing and Information Science in Engineering
Volume:
25
Issue:
5
ISSN:
1530-9827
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Robotic technology can benefit disassembly operations by reducing human operators’ workload and assisting them with handling hazardous materials. Safety consideration and predicting human movement is a priority in human-robot close collaboration. The point-by-point forecasting of human hand motion which forecasts one point at each time does not provide enough information on human movement due to errors between the actual movement and predicted value. This study provides a range of possible hand movements to enhance safety. It applies three machine learning techniques including Long Short-Term Memory (LSTM), Gated Recurrent Unit (GRU), and Bayesian Neural Network (BNN) combined with Bagging and Monte Carlo Dropout (MCD), namely LSTM-Bagging, GRU-Bagging, and BNN-MCD to predict the possible movement range. The study uses an Inertial Measurement Units (IMU) dataset collected from the disassembly of desktop computers to show the application of the proposed method. The findings reveal that BNN-MCD outperforms other models in forecasting the range of possible hand movement. 
    more » « less
  2. This paper presents a comprehensive disassembly sequence planning (DSP) algorithm in the human–robot collaboration (HRC) setting with consideration of several important factors including limited resources and human workers’ safety. The proposed DSP algorithm is capable of planning and distributing disassembly tasks among the human operator, the robot, and HRC, aiming to minimize the total disassembly time without violating resources and safety constraints. Regarding the resource constraints, we consider one human operator and one robot, and a limited quantity of disassembly tools. Regarding the safety constraints, we consider avoiding potential human injuries from to-be-disassembled components and possible collisions between the human operator and the robot due to the short distance between disassembly tasks. In addition, the transitions for tool changing, the moving between disassembly modules, and the precedence constraint of components to be disassembled are also considered and formulated as constraints in the problem formulation. Both numerical and experimental studies on the disassembly of a used hard disk drive (HDD) have been conducted to validate the proposed algorithm. 
    more » « less
  3. In recent years, using orthogonal matrices has been shown to be a promising approach to improving recurrent neural networks (RNNs) with training, stability, and convergence, particularly to control gradients. While gated recurrent unit (GRU) and long short-term memory (LSTM) architectures address the vanishing gradient problem by using a variety of gates and memory cells, they are still prone to the exploding gradient problem. In this work, we analyze the gradients in GRU and propose the use of orthogonal matrices to prevent exploding gradient problems and enhance long-term memory. We study where to use orthogonal matrices and propose a Neumann series–based scaled Cayley transformation for training orthogonal matrices in GRU, which we call Neumann-Cayley orthogonal GRU (NC-GRU). We present detailed experiments of our model on several synthetic and real-world tasks, which show that NC-GRU significantly outperforms GRU and several other RNNs. 
    more » « less
  4. Abstract Disassembly is an essential step for remanufacturing end-of-life (EOL) products. Optimization of disassembly sequences and the utilization of robotic technology could alleviate the labor-intensive nature of dismantling operations. This study proposes an optimization framework for disassembly sequence planning under uncertainty considering human–robot collaboration. The proposed framework combines three attributes: disassembly cost, safety, and complexity of disassembly, namely disassembleability, to identify the optimal disassembly path and allocate operations between human and robot. A multi-attribute utility function is used to address uncertainty and make a tradeoff among multiple attributes. The disassembly time reflects the cost of disassembly which is assumed to be an uncertain parameter with a Beta distribution; the disassembleability evaluates the feasibility of conducting operations by robot; finally, the safety index ensures the protection of human workers in the work environment. An example of dismantling a desktop computer is used to show the application. The model identifies the optimal disassembly sequence with less disassembly cost, high disassembleability, and increased safety index while allocating disassembly operations among human and robot. A sensitivity analysis is conducted to show the model's performance when changing the disassembly cost for the robot. 
    more » « less
  5. In directed energy deposition (DED), accurately controlling and predicting melt pool characteristics is essential for ensuring desired material qualities and geometric accuracies. This paper introduces a robust surrogate model based on recurrent neural network (RNN) architectures—Long Short-Term Memory (LSTM), Bidirectional LSTM (Bi-LSTM), and Gated Recurrent Unit (GRU). Leveraging a time series dataset from multi-physics simulations and a three-factor, three-level experimental design, the model accurately predicts melt pool peak temperatures, lengths, widths, and depths under varying conditions. RNN algorithms, particularly Bi-LSTM, demonstrate high predictive accuracy, with an R-square of 0.983 for melt pool peak temperatures. For melt pool geometry, the GRU-based model excels, achieving R-square values above 0.88 and reducing computation time by at least 29%, showcasing its accuracy and efficiency. The RNN-based surrogate model built in this research enhances understanding of melt pool dynamics and supports precise DED system setups. 
    more » « less