skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on February 24, 2026

Title: On-demand RFID: Improving Privacy, Security, and User Trust in RFID Activation through Physically-Intuitive Design
Passive RFID is ubiquitous for key use-cases that include authentication, contactless payment, and location track- ing. Yet, RFID chips can be read without users’ knowledge and consent, causing security and privacy concerns that reduce trust. To improve trust, we employed physically-intuitive design prin- ciples to create On-demand RFID (ORFID). ORFID’s antenna, disconnected by default, can only be re-connected by a user pressing and holding the tag. When the user lets go, the antenna automatically disconnects. ORFID helps users visibly examine the antenna’s connection: by pressing a liquid well, users can observe themselves pushing out a dyed, conductive liquid to fill the void between the antenna’s two bisected ends; by releasing their hold, they can see the liquid recede. A controlled evaluation with 17 participants showed that users trusted ORFID significantly more than a commodity RFID tag, both with and without an RFID- blocking wallet. Users attributed this increased trust to visible state inspection and intentional activation.  more » « less
Award ID(s):
2316294
PAR ID:
10659314
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Internet Society
Date Published:
Format(s):
Medium: X
Location:
San Diego, CA
Sponsoring Org:
National Science Foundation
More Like this
  1. This demo presents RFind, a system that enables fine-grained RFID localization via ultra-wideband emulation. RFind operates by measuring the time-of-flight -- i.e., the time it takes the signal to travel from an antenna to an RFID tag. To do so, it emulates an ultra-wide bandwidth on today's narrowband RFIDs without requiring any hardware modification to the tags. It then uses the large emulated bandwidth to estimate the time-of-flight and localize RFIDs. In contrast to past RFID localization proposals, RFind can operate in multipath-rich environments without reference tags and without requiring tag or antenna motion. The demo will allow users to move RFID-tagged objects to any location in line-of-sight, non-line-of-sight, and multi-path rich settings and check that the system can accurately localize the objects. 
    more » « less
  2. Continuous location authentication (CLA) seeks to continuously and automatically verify the physical presence of legitimate users in a protected indoor area. CLA can play an important role in contexts where access to electrical or physical resources must be limited to physically present legitimate users. In this paper, we present WearRF-CLA, a novel CLA scheme built upon increasingly popular wrist wearables and UHF RFID systems. WearRF-CLA explores the observation that human daily routines in a protected indoor area comprise a sequence of human-states (e.g., walking and sitting) that follow predictable state transitions. Each legitimate WearRF-CLA user registers his/her RFID tag and also wrist wearable during system enrollment. After the user enters a protected area, WearRF-CLA continuously collects and processes the gyroscope data of the wrist wearable and the phase data of the RFID tag signals to verify three factors to determine the user's physical presence/absence without explicit user involvement: (1) the tag ID as in a traditional RFID authentication system, (2) the validity of the human-state chain, and (3) the continuous coexistence of the paired wrist wearable and RFID tag with the user. The user passes CLA if and only if all three factors can be validated. Extensive user experiments on commodity smartwatches and UHF RFID devices confirm the very high security and low authentication latency of WearRF-CLA. 
    more » « less
  3. UHF RFID tags have been widely used for contactless inventory and tracking applications. One fundamental problem with RFID readers is their limited tag reading rate. Existing RFID readers (e.g., Impinj Speedway) can read about 35 tags per second in a read zone, which is far from enough for many applications. In this paper, we present the first-of-its-kind RFID reader (mReader), which borrows the idea of multi-user MIMO (MU-MIMO) from cellular networks to enable concurrent multi-tag reading in passive RFID systems. mReader is equipped with multiple antennas for implicit beamforming in downlink transmissions. It is enabled by three key techniques: uplink collision recovery, transition-based channel estimation, and zero-overhead channel calibration. In addition, mReader employs a Q-value adaptation algorithm for medium access control to maximize its tag reading rate. We have built a prototype of mReader on USRP X310 and demonstrated for the first time that a two-antenna reader can read two commercial off-the-shelf (COTS) tags simultaneously. Numerical results further show that mReader can improve the tag reading rate by 45% compared to existing RFID readers. 
    more » « less
  4. Commodity ultra-high-frequency (UHF) RFID authentication systems only provide weak user authentication, as RFID tags can be easily stolen, lost, or cloned by attackers. This paper presents the design and evaluation of SmartRFID, a novel UHF RFID authentication system to promote commodity crypto-less UHF RFID tags for security-sensitive applications. SmartRFID explores extremely popular smart devices and requires a legitimate user to enroll his smart device along with his RFID tag. Besides authenticating the RFID tag as usual, SmartRFID verifies whether the user simultaneously possesses the associated smart device with both feature-based machine learning and deep learning techniques. The user is considered authentic if and only if passing the dual verifications. Comprehensive user experiments on commodity smartwatches and RFID devices confirmed the high security and usability of SmartRFID. In particular, SmartRFID achieves a true acceptance rate of above 97.5% and a false acceptance rate of less than 0.7% based on deep learning. In addition, SmartRFID can achieve an average authentication latency of less than 2.21s, which is comparable to inputting a PIN on a door keypad or smartphone. 
    more » « less
  5. null (Ed.)
    Passive radio-frequency identification (RFID) tags are attractive because they are low cost, battery-free, and easy to deploy. This technology is traditionally being used to identify tags attached to the objects. In this paper, we explore the feasibility of turning passive RFID tags into battery-free temperature sensors. The impedance of the RFID tag changes with the temperature and this change will be manifested in the reflected signal from the tag. This opens up an opportunity to realize battery-free temperature sensing using a passive RFID tag with already deployed Commercial Off-the-Shelf (COTS) RFID reader-antenna infrastructure in supply chain management or inventory tracking. However, it is challenging to achieve high accuracy and robustness against the changes in the environment. To address these challenges, we first develop a detailed analytical model to capture the impact of temperature change on the tag impedance and the resulting phase of the reflected signal. We then build a system that uses a pair of tags, which respond differently to the temperature change to cancel out other environmental impacts. Using extensive evaluation, we show our model is accurate and our system can estimate the temperature within a 2.9 degree centigrade median error and support a normal read range of 3.5 m in an environment-independent manner. 
    more » « less