skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A robust ensemble feature selection approach to prioritize genes associated with survival outcome in high-dimensional gene expression data
Exploring features associated with the clinical outcome of interest is a rapidly advancing area of research. However, with contemporary sequencing technologies capable of identifying over thousands of genes per sample, there is a challenge in constructing efficient prediction models that balance accuracy and resource utilization. To address this challenge, researchers have developed feature selection methods to enhance performance, reduce overfitting, and ensure resource efficiency. However, applying feature selection models to survival analysis, particularly in clinical datasets characterized by substantial censoring and limited sample sizes, introduces unique challenges. We propose a robust ensemble feature selection approach integrated with group Lasso to identify compelling features and evaluate its performance in predicting survival outcomes. Our approach consistently outperforms established models across various criteria through extensive simulations, demonstrating low false discovery rates, high sensitivity, and high stability. Furthermore, we applied the approach to a colorectal cancer dataset from The Cancer Genome Atlas, showcasing its effectiveness by generating a composite score based on the selected genes to correctly distinguish different subtypes of the patients. In summary, our proposed approach excels in selecting impactful features from high-dimensional data, yielding better outcomes compared to contemporary state-of-the-art models.  more » « less
Award ID(s):
2137983
PAR ID:
10659498
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Frontiers
Date Published:
Journal Name:
Frontiers in Systems Biology
Volume:
4
ISSN:
2674-0702
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Background: The number of survivors of cancer is growing, and they often experience negative long-term behavioral outcomes due to cancer treatments. There is a need for better computational methods to handle and predict these outcomes so that physicians and health care providers can implement preventive treatments. Objective: This study aimed to create a new feature selection algorithm to improve the performance of machine learning classifiers to predict negative long-term behavioral outcomes in survivors of cancer. Methods: We devised a hybrid deep learning–based feature selection approach to support early detection of negative long-term behavioral outcomes in survivors of cancer. Within a data-driven, clinical domain–guided framework to select the best set of features among cancer treatments, chronic health conditions, and socioenvironmental factors, we developed a 2-stage feature selection algorithm, that is, a multimetric, majority-voting filter and a deep dropout neural network, to dynamically and automatically select the best set of features for each behavioral outcome. We also conducted an experimental case study on existing study data with 102 survivors of acute lymphoblastic leukemia (aged 15-39 years at evaluation and >5 years postcancer diagnosis) who were treated in a public hospital in Hong Kong. Finally, we designed and implemented radial charts to illustrate the significance of the selected features on each behavioral outcome to support clinical professionals’ future treatment and diagnoses. Results: In this pilot study, we demonstrated that our approach outperforms the traditional statistical and computation methods, including linear and nonlinear feature selectors, for the addressed top-priority behavioral outcomes. Our approach holistically has higher F1, precision, and recall scores compared to existing feature selection methods. The models in this study select several significant clinical and socioenvironmental variables as risk factors associated with the development of behavioral problems in young survivors of acute lymphoblastic leukemia. Conclusions: Our novel feature selection algorithm has the potential to improve machine learning classifiers’ capability to predict adverse long-term behavioral outcomes in survivors of cancer. 
    more » « less
  2. Abstract Motivation Cancer heterogeneity is observed at multiple biological levels. To improve our understanding of these differences and their relevance in medicine, approaches to link organ- and tissue-level information from diagnostic images and cellular-level information from genomics are needed. However, these ‘radiogenomic’ studies often use linear or shallow models, depend on feature selection, or consider one gene at a time to map images to genes. Moreover, no study has systematically attempted to understand the molecular basis of imaging traits based on the interpretation of what the neural network has learned. These studies are thus limited in their ability to understand the transcriptomic drivers of imaging traits, which could provide additional context for determining clinical outcomes. Results We present a neural network-based approach that takes high-dimensional gene expression data as input and performs non-linear mapping to an imaging trait. To interpret the models, we propose gene masking and gene saliency to extract learned relationships from radiogenomic neural networks. In glioblastoma patients, our models outperformed comparable classifiers (>0.10 AUC) and our interpretation methods were validated using a similar model to identify known relationships between genes and molecular subtypes. We found that tumor imaging traits had specific transcription patterns, e.g. edema and genes related to cellular invasion, and 10 radiogenomic traits were significantly predictive of survival. We demonstrate that neural networks can model transcriptomic heterogeneity to reflect differences in imaging and can be used to derive radiogenomic traits with clinical value. Availability and implementation https://github.com/novasmedley/deepRadiogenomics. Contact whsu@mednet.ucla.edu Supplementary information Supplementary data are available at Bioinformatics online. 
    more » « less
  3. null (Ed.)
    Inferring phenotypic outcomes from genomic features is both a promise and challenge for systems biology. Using gene expression data to predict phenotypic outcomes, and functionally validating the genes with predictive powers are two challenges we address in this study. We applied an evolutionarily informed machine learning approach to predict phenotypes based on transcriptome responses shared both within and across species. Specifically, we exploited the phenotypic diversity in nitrogen use efficiency and evolutionarily conserved transcriptome responses to nitrogen treatments across Arabidopsis accessions and maize varieties. We demonstrate that using evolutionarily conserved nitrogen responsive genes is a biologically principled approach to reduce the feature dimensionality in machine learning that ultimately improved the predictive power of our gene-to-trait models. Further, we functionally validated seven candidate transcription factors with predictive power for NUE outcomes in Arabidopsis and one in maize. Moreover, application of our evolutionarily informed pipeline to other species including rice and mice models underscores its potential to uncover genes affecting any physiological or clinical traits of interest across biology, agriculture, or medicine. 
    more » « less
  4. null (Ed.)
    Heterogeneity is a hallmark of cancer. For various cancer outcomes/phenotypes, supervised heterogeneity analysis has been conducted, leading to a deeper understanding of disease biology and customized clinical decisions. In the literature, such analysis has been oftentimes based on demographic, clinical, and omics measurements. Recent studies have shown that high-dimensional histopathological imaging features contain valuable information on cancer outcomes. However, comparatively, heterogeneity analysis based on imaging features has been very limited. In this article, we conduct supervised cancer heterogeneity analysis using histopathological imaging features. The penalized fusion technique, which has notable advantages-such as greater flexibility-over the finite mixture modeling and other techniques, is adopted. A sparse penalization is further imposed to accommodate high dimensionality and select relevant imaging features. To improve computational feasibility and generate more reliable estimation, we employ model averaging. Computational and statistical properties of the proposed approach are carefully investigated. Simulation demonstrates its favorable performance. The analysis of The Cancer Genome Atlas (TCGA) data may provide a new way of defining/examining breast cancer heterogeneity. 
    more » « less
  5. Long noncoding RNA (lncRNA) plays key roles in tumorigenesis. Misexpression of lncRNA can lead to changes in expression profiles of various target genes, which are involved in cancer initiation and progression. So, identifying key lncRNAs for a cancer would help develop the cancer therapy. Usually, to identify key lncRNAs for a cancer, expression profiles of lncRNAs for normal and cancer samples are required. But, this kind of data are not available for all cancers. In the present study, a computational framework is developed to identify cancer specific key lncRNAs using the lncRNA expression of cancer patients only. The framework consists of two state-of-the-art feature selection techniques - Recursive Feature Elimination (RFE) and Least Absolute Shrinkage and Selection Operator (LASSO); and five machine learning models - Naive Bayes, K-Nearest Neighbor, Random Forest, Support Vector Machine, and Deep Neural Network. For experiment, expression values of lncRNAs for 8 cancers - BLCA, CESC, COAD, HNSC, KIRP, LGG, LIHC, and LUAD - from TCGA are used. The combined dataset consists of 3,656 patients with expression values of 12,309 lncRNAs. Important features or key lncRNAs are identified by using feature selection algorithms RFE and LASSO. Capability of these key lncRNAs in classifying 8 different cancers is checked by the performance of five classification models. This study identified 37 key lncRNAs that can classify 8 different cancer types with an accuracy ranging from 94% to 97%. Finally, survival analysis supports that the discovered key lncRNAs are capable of differentiating between high-risk and low-risk patients. 
    more » « less