skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on March 1, 2026

Title: Sill Stacking in Subseafloor Unconsolidated Sediments and Control on Sustained Hydrothermal Systems: Evidence From IODP Drilling in the Guaymas Basin, Gulf of California
Abstract Magma emplacement in the top unconsolidated sediments of rift basins is poorly understood. We compare two shallow sills from the Guaymas Basin (Gulf of California) using core data and analyses from IODP Expedition 385, and high‐resolution 2D seismic data. We show that magma stalling in the top uncemented sediment layer is controlled by the transition from siliceous claystone to uncemented silica‐rich sediment, favoring flat sill formation. Space is created through a combination of viscous indentation, magma‐sediment mingling and fluidization processes. We show that sills emplace above the opal‐A/CT diagenetic barrier. Our model suggests that in low magma input regions sills emplace at constant depth from the seafloor, while high magma input leads to upward stacking of sills, culminating in a funnel‐shaped intrusions. Our petrophysical, petrographic, and textural analyses show that magma‐sediment mingling creates significant porosity (up to 20%) through thermal cracking of the assimilated sediment. Stable isotope data suggest carbonate formation at 70–90°C, consistent with background geothermal gradient at 250–325 m depth. The unconsolidated, water‐rich host sediments produce little thermogenic gas through contact metamorphism, but deep diagenetically formed gas bypasses the low‐permeability top sediments via hydrothermal fluids flowing through the magma plumbing system. This hydrothermal system provides a steady supply of hydrocarbons at temperatures amendable for microbial life, serving as an incubator that may be abundant in magma‐rich young rift basins and play a key role in sustaining subseafloor ecosystems.  more » « less
Award ID(s):
2133396
PAR ID:
10659929
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  more » ;  ;   « less
Publisher / Repository:
AGU
Date Published:
Journal Name:
Journal of Geophysical Research: Solid Earth
Volume:
130
Issue:
3
ISSN:
2169-9313
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The Guaymas Basin in the Gulf of California is a young marginal rift basin characterized by active seafloor spreading and rapid deposition of organic-rich sediments from highly productive overlying waters. The high sedimentation rates in combination with an active spreading system produce distinct oceanic crust where the shallowest magmatic emplacement occurs as igneous intrusion into overlying sediments. The intrusion of magma into organic-rich sediments creates a dynamic environment where tightly linked physical, chemical, and biological processes regulate the cycling of sedimentary carbon and other elements, not only in a narrow hydrothermal zone at the spreading center but also in widely distributed off-axis venting. Heat from magmatic sills thermally alters organic-rich sediments, releasing CO2, CH4, petroleum, and other alteration products. This heat also drives advective flow, which distributes these alteration products in the subsurface and may also release them to the water column. Within the sediment column, the thermal and chemical gradients created by this process represent environments rich in chemical energy that support microbial communities at and below the seafloor. These communities may play a critical role in chemical transformations that influence the stability and transport of carbon in crustal biospheres. Collectively, these processes have profound implications for the exchange of heat and mass between the lithosphere and overlying water column and may determine the long-term fate of carbon accumulation in organic-rich sediments. The fate of carbon deposited in Guaymas Basin, throughout the Gulf of California, and more broadly within similar marginal seas throughout the world, depends on the relative efficiencies of interacting physical, chemical, and microbial processes, some working to sequester carbon and others working to release carbon back to the ocean and the atmosphere. Drill core samples from Expedition 385 to Guaymas Basin will enable us to study these processes, their interactions, and their ultimate effects on carbon cycling. Samples obtained from scientific drilling are crucial to these goals, which include Quantifying the sedimentary and elemental inputs to the system through time and their variation with oceanographic and climatic conditions; Sampling igneous sills and the surrounding sediments to determine the products and efficiency of alteration and key hydrologic factors such as sediment type, faulting, and permeability evolution; and Studying subsurface microbial communities hosted by alteration products to determine their efficiency at capturing carbon-bearing alteration products and to further our understanding of the conditions that limit life in the deep biosphere. 
    more » « less
  2. Brazelton, William J. (Ed.)
    The flanking regions of Guaymas Basin, a young marginal rift basin located in the Gulf of California, are covered with thick sediment layers that are hydrothermally altered due to magmatic intrusions. To explore environmental controls on microbial community structure in this complex environment, we analyzed site- and depth-related patterns of microbial community composition (bacteria, archaea, and fungi) in hydrothermally influenced sediments with different thermal conditions, geochemical regimes, and extent of microbial mats. We compared communities in hot hydrothermal sediments (75-100°C at ~40 cm depth) covered by orange-pigmented Beggiatoaceae mats in the Cathedral Hill area, temperate sediments (25-30°C at ~40 cm depth) covered by yellow sulfur precipitates and filamentous sulfur oxidizers at the Aceto Balsamico location, hot sediments (>115°C at ~40 cm depth) with orange-pigmented mats surrounded by yellow and white mats at the Marker 14 location, and background, non-hydrothermal sediments (3.8°C at ~45 cm depth) overlain with ambient seawater. Whereas bacterial and archaeal communities are clearly structured by site-specific in-situ thermal gradients and geochemical conditions, fungal communities are generally structured by sediment depth. Unexpectedly, chytrid sequence biosignatures are ubiquitous in surficial sediments whereas deeper sediments contain diverse yeasts and filamentous fungi. In correlation analyses across different sites and sediment depths, fungal phylotypes correlate to each other to a much greater degree than Bacteria and Archaea do to each other or to fungi, further substantiating that site-specific in-situ thermal gradients and geochemical conditions that control bacteria and archaea do not extend to fungi. 
    more » « less
  3. Abstract The Guaymas Basin spreading center, at 2000 m depth in the Gulf of California, is overlain by a thick sedimentary cover. Across the basin, localized temperature anomalies, with active methane venting and seep fauna exist in response to magma emplacement into sediments. These sites evolve over thousands of years as magma freezes into doleritic sills and the system cools. Although several cool sites resembling cold seeps have been characterized, the hydrothermally active stage of an off-axis site was lacking good examples. Here, we present a multidisciplinary characterization of Ringvent, an ~1 km wide circular mound where hydrothermal activity persists ~28 km northwest of the spreading center. Ringvent provides a new type of intermediate-stage hydrothermal system where off-axis hydrothermal activity has attenuated since its formation, but remains evident in thermal anomalies, hydrothermal biota coexisting with seep fauna, and porewater biogeochemical signatures indicative of hydrothermal circulation. Due to their broad potential distribution, small size and limited life span, such sites are hard to find and characterize, but they provide critical missing links to understand the complex evolution of hydrothermal systems. 
    more » « less
  4. null (Ed.)
    International Ocean Discovery Program (IODP) Expedition 385 drilled organic-rich sediments with sill intrusions on the flanking regions and in the northern axial graben in Guaymas Basin, a young marginal rift basin in the Gulf of California. Guaymas Basin is characterized by a widely distributed, intense heat flow and widespread off-axis magmatism expressed by a dense network of sill intrusions across the flanking regions, which is in contrast to classical mid-ocean ridge spreading centers. The numerous off-axis sills provide multiple transient heat sources that mobilize buried sedimentary carbon, in part as methane and other hydrocarbons, and drive hydrothermal circulation. The resulting thermal and geochemical gradients shape abundance, composition, and activity of the deep subsurface biosphere of the basin. Drill sites extend over the flanking regions of Guaymas Basin, covering a distance of ~81 km from the from the northwest to the southeast. Adjacent Sites U1545 and U1546 recovered the oldest and thickest sediment successions (to ~540 meters below seafloor [mbsf]; equivalent to the core depth below seafloor, Method A [CSF-A] scale), one with a thin sill (a few meters in thickness) near the drilled bottom (Site U1545), and one with a massive, deeply buried sill (~356–430 mbsf) that chemically and physically affects the surrounding sediments (Site U1546). Sites U1547 and U1548, located in the central part of the northern Guaymas Basin segment, were drilled to investigate a 600 m wide circular mound (bathymetric high) and its periphery. The dome-like structure is outlined by a ring of active vent sites called Ringvent. It is underlain by a remarkably thick sill at shallow depth (Site U1547). Hydrothermal gradients steepen at the Ringvent periphery (Holes U1548A–U1548C), which in turn shifts the zones of authigenic carbonate precipitation and of highest microbial cell abundance toward shallower depths. The Ringvent sill was drilled several times and yielded remarkably diverse igneous rock textures, sediment–sill interfaces, and hydrothermal alteration, reflected by various secondary minerals in veins and vesicles. Thus, the Ringvent sill became the target of an integrated sampling and interdisciplinary research effort that included geological, geochemical, and microbiological specialties. The thermal, lithologic, geochemical, and microbiological contrasts between the two deep northwestern sites (U1545 and U1546) and the Ringvent sites (U1547 and U1548) form the scientific centerpiece of the expedition. These observations are supplemented by results from sites that represent attenuated cold seepage conditions in the central basin (Site U1549), complex and disturbed sediments overlying sills in the northern axial trough (Site U1550), terrigenous sedimentation events on the southeastern flanking regions (Site U1551), and hydrate occurrence in shallow sediments proximal to the Sonora margin (Site U1552). The scientific outcomes of Expedition 385 will (1) revise long-held assumptions about the role of sill emplacement in subsurface carbon mobilization versus carbon retention, (2) comprehensively examine the subsurface biosphere of Guaymas Basin and its responses and adaptations to hydrothermal conditions, (3) redefine hydrothermal controls of authigenic mineral formation in sediments, and (4) yield new insights into many geochemical and geophysical aspects of both architecture and sill–sediment interaction in a nascent spreading center. The generally high quality and high degree of completeness of the shipboard datasets present opportunities for interdisciplinary and multidisciplinary collaborations during shore-based studies. In comparison to Deep Sea Drilling Project Leg 64 to Guaymas Basin in 1979, sophisticated drilling strategies (for example, the advanced piston corer [APC] and half-length APC systems) and numerous analytical innovations have greatly improved sample recovery and scientific yield, particularly in the areas of organic geochemistry and microbiology. For example, microbial genomics did not exist 40 y ago. However, these technical refinements do not change the fact that Expedition 385 will in many respects build on the foundations laid by Leg 64 for understanding Guaymas Basin, regardless of whether adjustments are required in the near future. 
    more » « less
  5. null (Ed.)
    The primary objective of International Ocean Discovery Program Expedition 381 was to retrieve a record of early continental rifting and basin evolution from the Corinth rift, central Greece. Continental rifting is fundamental for the formation of ocean basins, and active rift zones are dynamic regions of high geohazard potential. However, the detailed spatial and temporal evolution of a complete rift system needed to understand rift development from the fault to plate scale is poorly resolved. In the active Corinth rift, deformation rates are high, the recent synrift succession is preserved and complete offshore, earlier rift phases are preserved onshore, and a dense seismic database provides high-resolution imaging of the fault network and of seismic stratigraphy around the basin. As the basin has subsided, its depositional environment has been affected by fluctuating global sea level and its absolute position relative to sea level, and the basin sediments record this changing environment through time. In Corinth, we can therefore achieve an unprecedented precision of timing and spatial complexity of rift-fault system development, rift-controlled drainage system evolution, and basin fill in the first few million years of rift history. The following are the expedition themes: • High-resolution fault slip and rift evolution history, • Surface processes in active rifts, • High-resolution late Quaternary Eastern Mediterranean paleoclimate and paleoenvironment of a developing rift basin, and • Geohazard assessment in an active rift. These objectives were and will be accomplished as a result of successful drilling, coring, and logging at three sites in the Gulf of Corinth, which collectively yielded 1645 m of recovered core over a 1905 m cored interval. Cores recovered at these sites together provide (1) a longer rift history (Sites M0078 and M0080), (2) a high-resolution record of the most recent phase of rifting (Site M0079), and (3) the spatial variation of rift evolution (comparison of sites in the central and eastern rift). The sediments contain a rich and complex record of changing sedimentation, sediment and pore water geochemistry, and environmental conditions from micropaleontological assemblages. The preliminary chronology developed by shipboard analyses will be refined and improved during postexpedition research, providing a high-resolution chronostratigraphy down to the orbital timescale for a range of tectonic, sedimentological, and paleoenvironmental studies. This chronology will provide absolute timing of key rift events, rates of fault movement, rift extension and subsidence, and the spatial variations of these parameters. The core data will also allow us to investigate the relative roles of and feedbacks between tectonics, climate, and eustasy in sediment flux and basin evolution. Finally, the Corinth rift boreholes will provide the first long Quaternary record of Mediterranean-type climate in the region. The potential range of scientific applications for this unique data set is very large, encompassing tectonics, sedimentary processes, paleoenvironment, paleoclimate, paleoecology, geochemistry, and geohazards. 
    more » « less