skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Inferring microalgae density and net ecosystem production on soft sediments using infrared imaging
Abstract Measuring microalgae density in soft‐sediment benthos has challenges for even the most sophisticated methods. If the goal is to assess the photosynthetic potential of epipelon, then microalgae should be sampled only at the surface of the benthos to the depth of light penetration. Furthermore, microalgae density may show spatial and temporal variability that can only be captured by using many point samples and nondestructive sampling. Here, we use simple near‐infrared (NIR) imagery to assess surface density of microalgae in soft underwater sediments and to infer their photosynthetic capacity. In lab studies, NIR imagery gives estimates of epipelon density that are strongly correlated with standard chlorophylla(Chla) assays using pigment extraction and fluorometry (  = 0.70), but NIR imagery is better able to separate experimental treatments. In analyses of sediment samples from a lake, NIR imagery gives estimates of epipelon Chladensity that are strongly correlated to net ecosystem production (NEP). Near‐infrared imagery also gives a fine‐grained assessment of the spatial distribution of epipelon that helps to explain the relationship between epipelon density and NEP. Finally, images from an underwater NIR camera over the course of a wind disturbance event give estimates of the relative density of microalgae that is buried and is likely to be, at least temporarily, photosynthetically inactive. These results show that NIR imagery provides an easy and nondestructive method for sampling surface densities of microalgae which is particularly suitable for remote field locations and for educational settings in which students can generate results with cheap and robust equipment.  more » « less
Award ID(s):
2134446
PAR ID:
10660180
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Limnology and Oceanography
Date Published:
Journal Name:
Limnology and Oceanography: Methods
Volume:
23
Issue:
3
ISSN:
1541-5856
Page Range / eLocation ID:
176 to 190
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We present near-infrared (NIR) ground-basedY,J,H, andKimaging obtained in the James Webb Space Telescope (JWST) North Ecliptic Pole Time Domain Field (NEP TDF) using the MMT-Magellan Infrared Imager and Spectrometer on the MMT. These new observations cover a field of approximately 230 arcmin2inY,H, andK,and 313 arcmin2inJ. Using Monte Carlo simulations, we estimate a 1σdepth relative to the background sky of (Y, J, H, K) = (23.80, 23.53, 23.13, 23.28) in AB magnitudes for point sources at a 95% completeness level. These observations are part of the ground-based effort to characterize this region of the sky, supplementing space-based data obtained with Chandra, NuSTAR, XMM, AstroSat, Hubble Space Telescope, and JWST. This paper describes the observations and reduction of the NIR imaging and combines these NIR data with archival imaging in the visible, obtained with the Subaru Hyper-Suprime-Cam, to produce a merged catalog of 57,501 sources. The new observations reported here, plus the corresponding multiwavelength catalog, will provide a baseline for time-domain studies of bright sources in the NEP TDF. 
    more » « less
  2. There is a critical need to quantify and monitor mesophotic coral reef community structure and function at multiple spatial and temporal scales. Because accessing these habitats is costly in terms of infrastructure and effort, often for a modest return in data, many investigators collect digital imagery using transect techniques from unmanned platforms. Specifically, remotely operated vehicles and autonomous underwater vehicles are used because they operate at deeper depths for extensive periods of time, can carry an array of oceanographic and imaging instruments, and can collect and archive extensive amounts of video and still imagery. However, substrate angle, camera angle, and vehicle position above the benthos creates varying degrees of error in the imagery due to parallax and geometric distortion. Photogrammetry conducted on 2D photographs from uncorrected 3D imagery can over- or under-estimate the percent cover, biomass estimates, and abundance of the benthic groups of interest. Here we illustrate these errors and emphasize the requirement for post-processing of imagery to ensure that these data can be used for valid quantitative ecological descriptions of mesophotic benthic communities in the future. 
    more » « less
  3. Information on the intracellular content and functional diversity of phytoplankton pigments can provide valuable insight on the ecophysiological state of primary producers and the flow of energy within aquatic ecosystems. Combined global datasets of analytical flow cytometry (AFC) cell counts and High-Performance Liquid Chromatography (HPLC) pigment concentrations were used to examine vertical and seasonal variability in the ratios of phytoplankton pigments in relation to indices of cellular photoacclimation. Across all open ocean datasets, the weight-to-weight ratio of photoprotective to photosynthetic pigments showed a strong depth dependence that tracked the vertical decline in the relative availability of light. The Bermuda Atlantic Time-series Study (BATS) dataset revealed a general increase in surface values of the relative concentrations of photoprotective carotenoids from the winter-spring phytoplankton communities dominated by low-light acclimated eukaryotic microalgae to the summer and early autumn communities dominated by high-light acclimated picocyanobacteria. InProchlorococcus-dominated waters, the vertical decline in the relative contribution of photoprotective pigments to total pigment concentration could be attributed in large part to changes in the cellular content of photosynthetic pigments (PSP) rather than photoprotective pigments (PPP), as evidenced by a depth-dependent increase of the intracellular concentration of the divinyl chlorophyll-a(DVChl-a) whilst the intracellular concentration of the PPP zeaxanthin remained relatively uniform with depth. The ability ofProchlorococcuscells to adjust their DVChl-acell-1over a large gradient in light intensity was reflected in more highly variable estimates of carbon-to-Chl-aratio compared to those reported for other phytoplankton groups. This cellular property is likely the combined result of photoacclimatory changes at the cellular level and a shift in dominant ecotypes. Developing a mechanistic understanding of sources of variability in pigmentation of picocyanobacteria is critical if the pigment markers and bio-optical properties of these cells are to be used to map their biogeography and serve as indicators of photoacclimatory state of subtropical phytoplankton communities more broadly. It would also allow better assessment of effects on, and adaptability of phytoplankton communities in the tropical/subtropical ocean due to climate change. 
    more » « less
  4. Abstract Essential to life on Earth, assessment of marine photosynthesis is of paramount importance. Photosynthesis occurs in spatially discrete microscopic entities at various levels of biological organization, from subcellular chloroplasts to symbiotic microalgae and macroalgae, and is influenced by the surrounding conditions.As such, in situ photosynthetic efficiency mapping on appropriate scales holds great promise for learning about these processes.To achieve this goal, we designed, fabricated, and tested an underwater microscope that incorporates standard colour, epifluorescence, and variable chlorophyllafluorescence imaging with nearly micron spatial resolution that resolves the structure and photosynthetic efficiency of benthic organisms.Our results highlight coral observations with high‐resolution photosynthetic spatial variability and detailed morphology. Our imaging system therefore enables research never before possible on the health and physiology of benthic aquatic organisms in situ, placing it in the context of their physical and biological environment. 
    more » « less
  5. null (Ed.)
    Abstract Diatoms are photosynthetic microalgae that fix a significant fraction of the world’s carbon. Because of their photosynthetic efficiency and high-lipid content, diatoms are priority candidates for biofuel production. Here, we report that sporulating Bacillus thuringiensis and other members of the Bacillus cereus group, when in co-culture with the marine diatom Phaeodactylum tricornutum, significantly increase diatom cell count. Bioassay-guided purification of the mother cell lysate of B. thuringiensis led to the identification of two diketopiperazines (DKPs) that stimulate both P. tricornutum growth and increase its lipid content. These findings may be exploited to enhance P. tricornutum growth and microalgae-based biofuel production. As increasing numbers of DKPs are isolated from marine microbes, the work gives potential clues to bacterial-produced growth factors for marine microalgae. 
    more » « less