Abstract Electrochemical applications of metal organic frameworks (MOFs) are of considerable current interest. Due to the large surface area exposed to solution, MOFs are potentially useful electrode materials for sensing inner‐sphere analytes, such as reactive oxygen species. Herein, we electrodeposited copper benzene tricarboxylate MOF (HKUST‐1) into the cavity of an open carbon nanopipette (CNP) to produce a CNP‐MOF nanoelectrode. Unlike electronically conductive metal or carbon electrodes, the electrochemical response of CNP–MOFs relies on oxidation/reduction of Cu(I)/Cu(II) nodes in the porous nanostructure. Nevertheless, sigmoidal steady‐state voltammograms with a well‐defined plateau current have been recorded for simple redox mediators, for example, ferrocenemethanol. A linear calibration curve obtained for the hydrogen peroxide reduction suggests that CNP–MOFs can potentially be useful as nanosensors for peroxide.
more »
« less
Dual-channel nano-carbon-liquid/liquid junction electrodes for multi-modal analysis: redox-active (dopamine) and non-redox-active (acetylcholine)
We present here a dual-channel nanoelectrode to detect both redox-active and non-redox-active analytes. The dual-channel nanoelectrode was developed from theta nanopipette. We developed one channel of the theta nanopipette to be a carbon nanoelectrode and the other channel to be a nano interface between two immiscible electrolyte solutions (nanoITIES) electrode, producing a nano-carbon-ITIES platform. The carbon nanoelectrode channel was developed by carbon deposition via pyrolysis followed by focused ion beam milling to measure redox-active analytes. The nanoITIES electrode channel was developed to detect non-redox-active analytes. The nano-carbon-ITIES electrodes were characterized using electrochemistry, scanning electron microscopy and transmission electron microscopy. Dopamine (a redox-active analyte) and acetylcholine (a non-redox-active analyte) were measured on the dualchannel nano-carbon-ITIES platform using the carbon nanoelectrode and the nanoITIES electrode, respectively. Using cyclic voltammetry, the diffusion-limited current of dopamine and acetylcholine detection on the nano-carbon-ITIES electrode increased linearly with increasing their concentrations. Using chronoamperometry (current versus time), we showed that the nano-carbon-ITIES electrode detected acetylcholine and dopamine at the same time. The introduced first-ever dual-functional nanocarbon- ITIES electrodes expand the current literature in multi-channel electrodes for multi-purpose analysis, which is an emerging area of research. Developing the analytical capability for the simultaneous detection of acetylcholine and dopamine is a critical step towards understanding diseases and disorders where both dopamine and acetylcholine are involved.
more »
« less
- Award ID(s):
- 1945274
- PAR ID:
- 10660191
- Publisher / Repository:
- Royale Society of Chemistry
- Date Published:
- Journal Name:
- The Analyst
- Volume:
- 150
- Issue:
- 2
- ISSN:
- 0003-2654
- Page Range / eLocation ID:
- 414 to 424
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We present a new configuration for coupling fluorescence microscopy and voltammetry using self-induced redox cycling for ultrasensitive electrochemical measurements. An array of nanopores, each supporting a recessed disk electrode separated by 100 nm in depth from a planar multiscale bipolar top electrode, was fabricated using multilayer deposition, nanosphere lithography, and reactive-ion etching. Self-induced redox cycling was induced on the disk electrode producing ∼30× current amplification, which was independently confirmed by measuring induced electrogenerated chemiluminescence from Ru(bpy) 3 2/3+ /tri- n -propylamine on the floating bipolar electrode. In this design, redox cycling occurs between the recessed disk and the top planar portion of a macroscopic thin film bipolar electrode in each nanopore. Electron transfer also occurs on a remote (mm-distance) portion of the planar bipolar electrode to maintain electroneutrality. This couples the electrochemical reactions of the target redox pair in the nanopore array with a reporter, such as a potential-switchable fluorescent indicator, in the cell at the distal end of the bipolar electrode. Oxidation or reduction of reversible analytes on the disk electrodes were accompanied by reduction or oxidation, respectively, on the nanopore portion of the bipolar electrode and then monitored by the accompanying oxidation of dihydroresorufin or reduction of resorufin at the remote end of the bipolar electrode, respectively. In both cases, changes in fluorescence intensity were triggered by the reaction of the target couple on the disk electrode, while recovery was largely governed by diffusion of the fluorescent indicator. Reduction of 1 nM of Ru(NH 3 ) 6 3+ on the nanoelectrode array was detected by monitoring the fluorescence intensity of resorufin, demonstrating high sensitivity fluorescence-mediated electrochemical sensing coupled to self-induced redox cycling.more » « less
-
null (Ed.)The ability to control the charge density of organic mixed ionic electronic conductors (OMIECs) via reactions with redox-active analytes has enabled applications as electrochemical redox sensors. Their charge density-dependent conductivity can additionally be tuned via charge injection from electrodes, for instance in organic electrochemical transistors (OECTs), where volumetric charging of the OMIEC channel enables excellent transconductance and amplification of low potentials. Recent efforts have combined the chemical detection with the transistor function of OECTs to achieve compact electrochemical sensors. However, these sensors often fall short of the expected amplification performance of OECTs. Here, we investigate the operation mechanism of various OECT architectures to deduce the design principles required to achieve reliable chemical detection and signal amplification. By utilizing a non-polarizable gate electrode and conducting the chemical reaction in a compartment separate from the OECT, the recently developed Reaction Cell OECT achieves reliable modulation of the OECT channel's charge density. This work demonstrates that systematic and rational design of OECT chemical sensors requires understanding the electrochemical processes that result in changes in the potential (charge density) of the channel, the underlying phenomenon behind amplification.more » « less
-
Interface between two immiscible electrolyte solutions (ITIES) is a powerful platform for chemical sensing and studying electron/ion transfer reactions and is typically formed between the interface of two immiscible solutions such as an oil phase and an aqueous phase. Micro/nano ITIES interface are generally formed at the tip of a borosilicate/quartz pipette, inner surface of which can be rendered hydrophobic to be filled with an organic solvent by a method called silanization. Nano/micrometer-sized electrodes are typically silanized by vapor silanization methods in which silanizing agent in vapor phase is exposed to nanopipettes. Micrometer-sized pipettes have been also silanized by directly filling liquid silanization agent, one type of liquid silanization methods, but this method has not been used at the nanoscale. Liquid silanization method allows to selectively silanize a single channel in a dual-channel pipette platform. Here, we developed the liquid silanization method for nanoscale ITIES and demonstrated that a stable cyclic voltammogram for tetrabutylammonium ion transfer across water/dichloroethane interface can be accomplished. We also presented challenges for liquid silanization at the nanoscale and strategies to overcome them. The liquid silanization methods presented here lay the foundation for future development of dual channel multi-functional probe where one channel is nanoITIES.more » « less
-
Hybrid capacitive deionization (HCDI), which combines a capacitive carbon electrode and a redox active electrode in a single device, has emerged as a promising method for water desalination, enabling higher ion removal capacity than devices containing two carbon electrodes. However, to date, the desalination performance of few redox active materials has been reported. For the first time, we present the electrochemical behavior of manganese oxide nanowires with four different tunnel crystal structures as faradaic electrodes in HCDI cells. Two of these phases are square tunnel structured manganese oxides, α-MnO2 and todorokite-MnO2. The other two phases have novel structures that cross-sectional scanning transmission electron microscopy analysis revealed to have ordered and disordered combinations of structural tunnels with different dimensions. The ion removal performance of the nanowires was evaluated not only in NaCl solution, which is traditionally used in laboratory experiments, but also in KCl and MgCl2 solutions, providing better understanding of the behavior of these materials for desalination of brackish water that contains multiple cation species. High ion removal capacities (as large as 27.8 mg g−1, 44.4 mg g−1, and 43.1 mg g−1 in NaCl, KCl, and MgCl2 solutions, respectively) and high ion removal rates (as large as 0.112 mg g−1 s−1, 0.165 mg g−1 s−1, and 0.164 mg g−1 s−1 in NaCl, KCl, and MgCl2 solutions, respectively) were achieved. By comparing ion removal capacity to structural tunnel size, it was found that smaller tunnels do not favor the removal of cations with larger hydrated radii, and more efficient removal of larger hydrated cations can be achieved by utilizing manganese oxides with larger structural tunnels. Extended HCDI cycling and ex situ X-ray diffraction analysis revealed the excellent stability of the manganese oxide electrodes in repeated ion removal/ion release cycles, and compositional analysis of the electrodes indicated that ion removal is achieved through both surface redox reactions and intercalation of ions into the structural tunnels. This work contributes to the understanding of the behavior of faradaic materials in electrochemical water desalination and elucidates the relationship between the electrode material crystal structure and the ion removal capacity/ion removal rate in various salt solutions.more » « less
An official website of the United States government

