skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on May 21, 2026

Title: The 230 GHz Variability of Numerical Models of Sagittarius A*. II. The Physical Origins of the Variability
Abstract We continue our previous work, H.-S. Chan et al., to investigate how variations in the electron temperature prescription parameter,RLow, influence the 3 hr variability at 230 GHz,MΔT, in magnetically arrested disk (MAD) models of Sagittarius A* (Sgr A*), through analyzing a series of general-relativistic magnetohydrodynamics and ray-tracing simulations. For models with a black hole spina > 0, we discovered that increasingRLowrenders the photon ring more optically thick, obscuring the varying accretion flows that contribute to the variability. However, asRLowincreases further, MAD flux eruptions become more pronounced, compensating for the decrease inMΔT. For models with spina < 0, although a higherRLowalso increases the optical thickness of the fluid, voids within the optically thick gas fail to cover the entire photon ring. Similarly, flux eruptions become more prominent asRLowincreases further, contributing to the observed rise inMΔTrelative toRLow. For black holes with spina= 0, although the effect of increasing optical depth is still present, their 230 GHz light curves, and henceMΔT, are insensitive to changes inRLow. Furthermore, we found that the variability of the 230 GHz light curves atRLow = 1 might correlate with fluctuations in the internal energy of the gas near the black hole, and we listed potential causes and solutions to the over-variability problem. Our findings highlight potential approaches for refiningMΔTto better align with observations when modeling Sgr A*.  more » « less
Award ID(s):
2034306
PAR ID:
10660239
Author(s) / Creator(s):
;
Publisher / Repository:
IOP
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
985
Issue:
2
ISSN:
0004-637X
Page Range / eLocation ID:
164
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Low-collisionality plasma in a magnetic field generically develops anisotropy in its distribution function with respect to the magnetic field direction. Motivated by the application to radiation from accretion flows and jets, we explore the effect of temperature anisotropy on synchrotron emission. We derive analytically and provide numerical fits for the polarized synchrotron emission and absorption coefficients for a relativistic bi-Maxwellian plasma (we do not consider Faraday conversion/rotation). Temperature anisotropy can significantly change how the synchrotron emission and absorption coefficients depend on observing angle with respect to the magnetic field. The emitted linear polarization fraction does not depend strongly on anisotropy, while the emitted circular polarization does. We apply our results to black hole imaging of Sgr A* and M87* by ray tracing a GRMHD simulation and assuming that the plasma temperature anisotropy is set by the thresholds of kinetic-scale anisotropy-driven instabilities. We find that the azimuthal asymmetry of the 230 GHz images can change by up to a factor of 3, accentuating (T>T) or counteracting (T<T) the image asymmetry produced by Doppler beaming. This can change the physical inferences from observations relative to models with an isotropic distribution function, e.g., by allowing for larger inclination between the line of sight and spin direction in Sgr A*. The observed image diameter and the size of the black hole shadow can also vary significantly due to plasma temperature anisotropy. We describe how the anisotropy of the plasma can affect future multifrequency and photon ring observations. We also calculate kinetic anisotropy-driven instabilities (mirror, whistler, and firehose) for relativistically hot plasmas. 
    more » « less
  2. Abstract The Event Horizon Telescope (EHT) has imaged two supermassive black holes, Messier 87* (M87*) and Sagittarius A* (Sgr A*), using very-long-baseline interferometry (VLBI). The theoretical analyses of each source suggest magnetically arrested disk (MAD) accretion viewed at modest inclination. These MADs exhibit rotationally symmetric polarization of synchrotron emission caused by symmetries of their ordered magnetic fields. We leverage these symmetries to study the detectability of the black hole photon ring, which imposes known antisymmetries in polarization. In this Letter, we propose a novel observational strategy based on coherent baseline averaging of polarization ratios On a rotating basis to detect the photon ring with 345 GHz VLBI from the Earth’s surface. Using synthetic observations from a likely future EHT, we find a reversal in polarimetric phases on long baselines that reveals the presence of the Sgr A* photon ring in a MAD system at 345 GHz, a critical frequency for lengthening baselines and overcoming interstellar scattering. We use our synthetic data and analysis pipeline to estimate requirements for the EHT using a new metric: SNRPR, the signal-to-noise ratio of this polarimetric reversal signal. We identify long, coherent integrations using frequency phase transfer as a critical enabling technique for the detection of the photon ring and predict a SNRPR∼ 2−3 detection using proposed next-generation Event Horizon Telescope parameters and currently favored models for the Sgr A* accretion flow. We find that higher sensitivity, rather than denser Fourier sampling, is the most critical requirement for polarimetric detection of the photon ring. 
    more » « less
  3. Abstract The near-horizon region of a black hole impacts linear (LP) and circular polarization (CP) through strong lensing of photons, adding large-scale symmetries and anti-symmetries to the polarized image. To probe the signature of lensing in polarimetry, we utilize a geometric model of concentric Gaussian rings of equal radius to investigate the transition in the Fourier plane at which the photon ring signal begins to dominate over the direct image. We find analytic, closed-form expressions for the transition radii in total intensity, LP, and CP, wherein the resultant formulae are composed of ratios of tunable image parameters, with the overall “scale” set primarily by the thickness of the direct image. Using these formulae, we compute the transition radii for time-averaged images of M87* simulations at 230 GHz, studying both magnetically arrested disk (MAD) and standard and normal evolution configurations for various spin and electron heating models. We compare geometric values to radii obtained directly from the simulations through a coherent averaging scheme. We find that nearly all MAD models have a photon ring-dominated CP signal on long baselines shorter than Earth's diameter at 230 GHz. Across favored models for the M87* accretion flow identified by the Event Horizon Telescope (EHT) polarimetric constraints, we quantify the sensitivity and antenna size requirements for the next-generation EHT and the Black Hole Explorer orbiter to detect these features. We find that the stringent requirements for CP favor explorations using long baselines on the ground, while LP remains promising on Earth-space baselines. 
    more » « less
  4. Context. High-frequency very-long-baseline interferometry (VLBI) observations can now resolve the event-horizon-scale emission from sources in the immediate vicinity of nearby supermassive black holes. Future space-VLBI observations will access highly lensed features of black hole images – photon rings – that will provide particularly sharp probes of strong-field gravity. Aims. Focusing on the particular case of the supermassive black hole M 87*, our goal is to explore a wide variety of accretion flows onto a Kerr black hole and to understand their corresponding images and visibilities. We are particularly interested in the visibility on baselines to space, which encodes the photon ring shape and whose measurement could provide a stringent test of the Kerr hypothesis. Methods. We developed a fully analytical model of stationary, axisymmetric accretion flows with a variable disk thickness and a matter four-velocity that can smoothly interpolate between purely azimuthal rotation and purely radial infall. To determine the observational appearance of such flows, we numerically integrated the general-relativistic radiative transfer equation in the Kerr spacetime, taking care to include the effects of thermal synchrotron emission and absorption. We then Fourier transformed the resulting images and analyzed their visibility amplitudes along the directions parallel and orthogonal to the black hole spin projected on the observer sky. Results. Our images generically display a wedding cake structure composed of discrete, narrow photon rings ( n  = 1, 2, …) stacked on top of broader primary emission that surrounds a central brightness depression of model-dependent size. At 230 GHz, the n  = 1 ring is always visible, but the n  = 2 ring is sometimes suppressed due to absorption. At 345 GHz, the medium is optically thinner and the n  = 2 ring displays clear signatures in both the image and visibility domains. We also examine the thermal synchrotron emissivity in the equatorial plane and show that it exhibits an exponential dependence on the radius for the preferred M 87* parameters. Conclusions. The black hole shadow is a model-dependent phenomenon – even for diffuse, optically thin sources – and should not be regarded as a generic prediction of general relativity. Observations at 345 GHz are promising for future space-VLBI measurements of the photon ring shape, since at this frequency the signal of the n  = 2 ring persists despite the disk thickness and nonzero absorption featured in our models. Future work is needed to investigate whether this conclusion holds in a larger variety of reasonable models. 
    more » « less
  5. ABSTRACT We present the results of nine simulations of radiatively inefficient magnetically arrested discs (MADs) across different values of the black hole spin parameter a*: −0.9, −0.7, −0.5, −0.3, 0, 0.3, 0.5, 0.7, and 0.9. Each simulation was run up to $$t \gtrsim 100\, 000\, GM/c^3$$ to ensure disc inflow equilibrium out to large radii. We find that the saturated magnetic flux level, and consequently also jet power, of MAD discs depends strongly on the black hole spin, confirming previous results. Prograde discs saturate at a much higher relative magnetic flux and have more powerful jets than their retrograde counterparts. MADs with spinning black holes naturally launch jets with generalized parabolic profiles whose widths vary as a power of distance from the black hole. For distances up to 100GM/c2, the power-law index is k ≈ 0.27–0.42. There is a strong correlation between the disc–jet geometry and the dimensionless magnetic flux, resulting in prograde systems displaying thinner equatorial accretion flows near the black hole and wider jets, compared to retrograde systems. Prograde and retrograde MADs also exhibit different trends in disc variability: accretion rate variability increases with increasing spin for a* > 0 and remains almost constant for a* ≲ 0, while magnetic flux variability shows the opposite trend. Jets in the MAD state remove more angular momentum from black holes than is accreted, effectively spinning down the black hole. If powerful jets from MAD systems in Nature are persistent, this loss of angular momentum will notably reduce the black hole spin over cosmic time. 
    more » « less