skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on September 18, 2026

Title: Validation and Calibration of Semianalytical Models for the Event Horizon Telescope Observations of Sagittarius A*
Abstract The Event Horizon Telescope (EHT) enables the exploration of black hole accretion flows at event-horizon scales. Fitting ray-traced physical models to EHT observations requires the generation of synthetic images, a task that is computationally demanding. This study leveragesALINet, a generative machine learning model, to efficiently produce radiatively inefficient accretion flow (RIAF) images as a function of the specified physical parameters.ALINethas previously been shown to be able to interpolate black hole images and their associated physical parameters after training on a computationally tractable set of library images. We utilize this model to estimate the uncertainty introduced by a number of anticipated unmodeled physical effects, including interstellar scattering and intrinsic source variability. We then use this to calibrate physical parameter estimates and their associated uncertainties from RIAF model fits to mock EHT data via a library of general relativistic magnetohydrodynamics models.  more » « less
Award ID(s):
2034306
PAR ID:
10660247
Author(s) / Creator(s):
;
Publisher / Repository:
IOP
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
991
Issue:
1
ISSN:
0004-637X
Page Range / eLocation ID:
105
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The Event Horizon Telescope (EHT) has released analyses of reconstructed images of horizon-scale millimeter emission near the supermassive black hole at the center of the M87 galaxy. Parts of the analyses made use of a large library of synthetic black hole images and spectra, which were produced using numerical general relativistic magnetohydrodynamics fluid simulations and polarized ray tracing. In this article, we describe thePATOKApipeline, which was used to generate the Illinois contribution to the EHT simulation library. We begin by describing the relevant accretion systems and radiative processes. We then describe the details of the three numerical codes we use,iharm,ipole, andigrmonty, paying particular attention to differences between the current generation of the codes and the originally published versions. Finally, we provide a brief overview of simulated data as produced byPATOKAand conclude with a discussion of limitations and future directions. 
    more » « less
  2. ABSTRACT We introduce a new library of 535 194 model images of the supermassive black holes and Event Horizon Telescope (EHT) targets Sgr A* and M87*, computed by performing general relativistic radiative transfer calculations on general relativistic magnetohydrodynamics simulations. Then to infer underlying black hole and accretion flow parameters (spin, inclination, ion-to-electron temperature ratio, and magnetic field polarity), we train a random forest machine learning model on various hand-picked polarimetric observables computed from each image. Our random forest is capable of making meaningful predictions of spin, inclination, and the ion-to-electron temperature ratio, but has more difficulty inferring magnetic field polarity. To disentangle how physical parameters are encoded in different observables, we apply two different metrics to rank the importance of each observable at inferring each physical parameter. Details of the spatially resolved linear polarization morphology stand out as important discriminators between models. Bearing in mind the theoretical limitations and incompleteness of our image library, for the real M87* data, our machinery favours high-spin retrograde models with large ion-to-electron temperature ratios. Due to the time-variable nature of these targets, repeated polarimetric imaging will further improve model inference as the EHT and next-generation (EHT) continue to develop and monitor their targets. 
    more » « less
  3. Abstract A new image-reconstruction algorithm, Principal-component Interferometric Modeling (PRIMO), applied to the interferometric data of the M87 black hole collected with the Event Horizon Telescope (EHT), resulted in an image that reached the native resolution of the telescope array.PRIMOis based on learning a compact set of image building blocks obtained from a large library of high-fidelity, physics-based simulations of black hole images. It uses these building blocks to fill the sparse Fourier coverage of the data that results from the small number of telescopes in the array. In this paper, we show that this approach is readily justified. Since the angular extent of the image of the black hole and of its inner accretion flow is finite, the Fourier space domain is heavily smoothed, with a correlation scale that is at most comparable to the sizes of the data gaps in the coverage of Fourier space with the EHT. Consequently,PRIMOor other machine learning algorithms can faithfully reconstruct the images without the need to generate information that is unconstrained by the data within the resolution of the array. We also address the completeness of the eigenimages and the compactness of the resulting representation. We show thatPRIMOprovides a compact set of eigenimages that have sufficient complexity to recreate a broad set of images well beyond those in the training set. 
    more » « less
  4. Abstract The sparse interferometric coverage of the Event Horizon Telescope (EHT) poses a significant challenge for both reconstruction and model fitting of black hole images.PRIMOis a new principal components analysis-based algorithm for image reconstruction that uses the results of high-fidelity general relativistic, magnetohydrodynamic simulations of low-luminosity accretion flows as a training set. This allows the reconstruction of images that are consistent with the interferometric data and that live in the space of images that is spanned by the simulations.PRIMOfollows Monte Carlo Markov Chains to fit a linear combination of principal components derived from an ensemble of simulated images to interferometric data. We show thatPRIMOcan efficiently and accurately reconstruct synthetic EHT data sets for several simulated images, even when the simulation parameters are significantly different from those of the image ensemble that was used to generate the principal components. The resulting reconstructions achieve resolution that is consistent with the performance of the array and do not introduce significant biases in image features such as the diameter of the ring of emission. 
    more » « less
  5. The Event Horizon Telescope (EHT) observation of M87in 2018 has revealed a ring with a diameter that is consistent with the 2017 observation. The brightest part of the ring is shifted to the southwest from the southeast. In this paper, we provide theoretical interpretations for the multi-epoch EHT observations for M87by comparing a new general relativistic magnetohydrodynamics model image library with the EHT observations for M87in both 2017 and 2018. The model images include aligned and tilted accretion with parameterized thermal and nonthermal synchrotron emission properties. The 2018 observation again shows that the spin vector of the M87supermassive black hole is pointed away from Earth. A shift of the brightest part of the ring during the multi-epoch observations can naturally be explained by the turbulent nature of black hole accretion, which is supported by the fact that the more turbulent retrograde models can explain the multi-epoch observations better than the prograde models. The EHT data are inconsistent with the tilted models in our model image library. Assuming that the black hole spin axis and its large-scale jet direction are roughly aligned, we expect the brightest part of the ring to be most commonly observed 90 deg clockwise from the forward jet. This prediction can be statistically tested through future observations. 
    more » « less