Abstract In this review, we focus on how purple non-sulfur bacteria can be leveraged for sustainable bioproduction to support the circular economy. We discuss the state of the field with respect to the use of purple bacteria for energy production, their role in wastewater treatment, as a fertilizer, and as a chassis for bioplastic production. We explore their ability to serve as single-cell protein and production platforms for fine chemicals from waste materials. We also introduce more Avant-Garde technologies that leverage the unique metabolisms of purple bacteria, including microbial electrosynthesis and co-culture. These technologies will be pivotal in our efforts to mitigate climate change and circularize the economy in the next two decades. One-sentence summaryPurple non-sulfur bacteria are utilized for a range of biotechnological applications, including the production of bio-energy, single cell protein, fertilizer, bioplastics, fine chemicals, in wastewater treatment and in novel applications like co-cultures and microbial electrosynthesis.
more »
« less
3D-bioprinted marine bacteria for the degradation of bioplastics
The severe, long-lasting harm caused by plastic pollution to marine ecosystems and coastal economies has led to the development of biodegradable plastics; however, their limited decomposition in cold, dark marine environments remains a challenge. Here, we present our newly developed technologies for creating 3D-bioprinted living materials for bioplastic degradation with specific use in marine environments. Our approach integrates halotolerant bioplastic-degrading bacteriumBacillussp. NRRL B-14911 into alginate-based bio-ink to print an engineered living material (ELM) termed a “bio-sticker.” Quantification of bacteria viability reveals that bioprinted marine bacteria survive within bio-stickers for more than three weeks. The rate at which the bio-stickers degrade the bioplastic polyhydroxybutyrate (PHB) can be tuned by altering bio-sticker biomass concentration, bioplastic concentration, or incubation temperature. Bio-stickers that are transferred to a new PHB sample still retain high biodegradation activity, demonstrating their durability. Strain sweep oscillatory tests demonstrate viscoelastic behavior of the bio-stickers. Monotonic tensile tests indicate that the elastic modulus and the adhesion of the bio-stickers are not negatively impacted by bacteria growth or incubation temperature. Our work paves the way for development of ELMs to facilitate the inclusion of bioplastics within the blue economy, promoting the emergence of more sustainable and eco-friendly materials.
more »
« less
- Award ID(s):
- 2230641
- PAR ID:
- 10660629
- Publisher / Repository:
- bioRxiv
- Date Published:
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Conventional wastewater treatment processes can be tailored to recover organic carbon from wastewater as intracellular polyhydroxybutyrate (PHB) polymer granules while simultaneously meeting effluent discharge standards. Traditional applications of PHB as a bioplastic are hampered by its suboptimal properties (e.g., brittle), lack of efficient and sustainable approaches for recovering PHB from cells, and concerns about wastewater-derived impurities. In this study, we report on the conversion of PHB and its monomer acids – 3-hydroxybutyric acid (3HBA) and crotonic acid (CA) – under hydrothermal conditions (in condensed water at elevated temperature and pressure) to form propylene, a valuable chemical intermediate that self-separates from water. PHB depolymerization results in a mixture of 3HBA and CA, which can interconvert via (de)hydration reactions that vary with prevailing reaction conditions. Further hydrothermal conversion of the monomer acids yields propylene and CO2. Conversion of 3HBA occurs at lower temperatures than CA, and a new concerted dehydration-decarboxylation pathway is proposed, which differs from the sequential dehydration (3HBA to CA) and decarboxylation (CA to propylene and CO2) pathway reported for dry thermal conversion. A kinetics network model informed by experimental results reveals that CA conversion to propylene and CO2 proceeds predominantly via hydration to 3HBA followed by the concerted dehydration-decarboxylation pathway rather than by direct decarboxylation of CA. Demonstrative experiments using PHB-containing methanotrophic biomass show results consistent with the model, producing propylene at near-theoretical yields at lower temperatures than reported previously.more » « less
-
Polyhydroxybutyrate (PHB) is a bio-based, biodegradable alternative to petroleum-based plastics. PHB production at industrial scales remains infeasible, in part due to insufficient yields and high costs. Addressing these challenges requires identifying novel biological chassis for PHB production and modifying known biological chassis to enhance production using sustainable, renewable inputs. Here, we take the former approach and present the first description of PHB production by two prosthecate photosynthetic purple non-sulfur bacteria (PNSB), Rhodomicrobium vannielii and Rhodomicrobium udaipurense. We show that both species produce PHB across photoheterotrophic, photoautotrophic, photoferrotrophic, and photoelectrotrophic growth conditions. Both species show the greatest PHB titers during photoheterotrophic growth on butyrate with dinitrogen gas as a nitrogen source (up to 44.08 mg/L), while photoelectrotrophic growth demonstrated the lowest titers (up to 0.13 mg/L). These titers are both greater (photoheterotrophy) and less (photoelectrotrophy) than those observed previously in a related PNSB, Rhodopseudomonas palustris TIE-1. On the other hand, we observe the highest electron yields during photoautotrophic growth with hydrogen gas or ferrous iron electron donors, and these electron yields were generally greater than those observed previously in TIE-1. These data suggest that non model organisms like Rhodomicrobium should be explored for sustainable PHB production and highlights utility in exploring novel biological chassis.more » « less
-
Understanding the biomineralization pathways in living biological species is a grand challenge owing to the difficulties in monitoring the mineralization process at sub-nanometer scales. Here, we monitored the nucleation and growth of magnetosome nanoparticles in bacteria and in real time using a transmission electron microscope (TEM). To enable biomineralization within the bacteria, we subcultured magnetotactic bacteria grown in iron-depleted medium and then mixed them with iron-rich medium within graphene liquid cells (GLCs) right before imaging the bacteria under the microscope. Using in situ electron energy loss spectroscopy (EELS), the oxidation state of iron in the biomineralized magnetosome was analysed to be magnetite with trace amount of hematite. The increase of mass density of biomineralized magnetosomes as a function of incubation time indicated that the bacteria maintained their functionality during the in situ TEM imaging. Our results underpin that GLCs enables a new platform to observe biomineralization events in living biological species at unprecedented spatial resolution. Understanding the biomineralization processes in living organisms facilitates the design of biomimetic materials, and will enable a paradigm shift in understanding the evolution of biological species.more » « less
-
Abstract Glutamate is one of the most important excitatory neurotransmitters within the mammalian central nervous system. The role of glutamate in regulating neural network signaling transmission through both synaptic and extra‐synaptic paths highlights the importance of the real‐time and continuous monitoring of its concentration and dynamics in living organisms. Progresses in multidisciplinary research have promoted the development of electrochemical glutamate sensors through the co‐design of materials, interfaces, electronic devices, and integrated systems. This review summarizes recent works reporting various electrochemical sensor designs and their applicability as miniaturized neural probes to in vivo sensing within biological environments. We start with an overview of the role and physiological significance of glutamate, the metabolic routes, and its presence in various bodily fluids. Next, we discuss the design principles, commonly employed validation models/protocols, and successful demonstrations of multifunctional, compact, and bio‐integrated devices in animal models. The final section provides an outlook on the development of the next generation glutamate sensors for neuroscience and neuroengineering, with the aim of offering practical guidance for future research.more » « less
An official website of the United States government

