skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: An emerging signaling hub: KAI2 at the nexus of phytohormone networks
SUMMARY The KARRIKIN INSENSITIVE 2 (KAI2) receptor, originally characterized for its role in seed germination and light‐responsive development, is now recognized as an important signaling component with broad physiological relevance across plant species. While KAI2 is perhaps best known for perceiving exogenous smoked‐derived karrikins, recent discoveries have revealed extensive crosstalk between KAI2‐mediated signaling and multiple phytohormone pathways. We synthesize the current knowledge of KAI2 crosstalk with core plant hormones like strigolactones, auxin, ethylene, gibberellins, abscisic acid, cytokinins, and salicylic acid. We highlight shared signaling components, transcriptional regulation, and physiological outcomes. We examine how KAI2 signaling modulates hormone signaling and discuss the emerging view of KAI2 as an integrator of environmental and hormonal cues, particularly in stress adaptation and developmental plasticity. Finally, we propose new approaches, including proximity‐labeling screens to dissect KAI2's full signaling potential and to explore open questions surrounding the identity and regulation of the endogenous putative KAI2 ligand. These insights position KAI2 as an evolving hub in the plant‐signaling network, with implications for both fundamental research and crop improvement.  more » « less
Award ID(s):
2139805 2047396
PAR ID:
10661217
Author(s) / Creator(s):
 ;  
Publisher / Repository:
The Plant Journal
Date Published:
Journal Name:
The Plant Journal
Volume:
124
Issue:
5
ISSN:
0960-7412
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT Plant immunity activation often results in suppression of plant growth, particularly in the case of constitutive immune activation. We discovered that signaling of the phytohormone cytokinin (CK), known to regulate plant growth through the control of cell division and shoot apical meristem (SAM) activity, can be suppressed by negative crosstalk with the defense phytohormones jasmonic acid (JA), and most evidently, salicylic acid (SA). We show that changing the negative crosstalk of SA on CK signaling in autoimmunity mutants by targeted increase of endogenous CK levels results in plants resistant to pathogens from diverse lifestyles, and relieves suppression of reproductive growth. Moreover, such changes in crosstalk result in a novel reproductive growth phenotype, suggesting a role for defense phytohormones in the SAM, likely through regulation of nitrogen response and cellular redox status. Our data suggest that targeted phytohormone crosstalk engineering can be used to achieve increased reproductive growth and pathogen resistance. SIGNIFICANCE STATEMENTPlants constantly integrate environmental stimuli with developmental programs to optimize their growth and fitness. Excessive activation of the plant immune system often leads to decreased plant growth, a process known as the growth-defense tradeoff. Here, we adapted phytohormone levels in Arabidopsis reproductive tissues of autoimmunity mutants to change phytohormonal crosstalk and diminish the growth tradeoff, resulting in increased broad resistance to pathogens and decreased growth suppression. Similar approaches to phytohormone crosstalk engineering could be used in different contexts to achieve outcomes of higher plant stress resilience and yield. 
    more » « less
  2. Karrikin (KAR) molecules found in smoke stimulate seed germination of many plant species that emerge after fire. Genetic studies in Arabidopsis thaliana have identified core components of the KAR signaling pathway, including an α/β-hydrolase, KARRIKIN INSENSITIVE2 (KAI2), that is required for KAR responses. Although KAI2 is often considered a KAR receptor, recent evidence suggests that KARs may require metabolism to become bioactive signals. In addition to sensing KARs or a KAR-derived signal, KAI2 is thought to recognize an unknown endogenous signal, KAI2 ligand (KL). We generated loss-of-function mutations in KARRIKIN-UP-REGULATED F-BOX1 ( KUF1 ), which is a transcriptional marker of KAR/KL signaling in A. thaliana and other plants. The kuf1 mutant in Arabidopsis shows several phenotypes that are consistent with enhanced activity of the KAI2 pathway, including reduced hypocotyl elongation, enhanced cotyledon expansion in light-grown seedlings, increased root hair density and elongation, and differential expression of KAR/KL-responsive transcriptional markers. Seedling phenotypes of kuf1 are dependent on KAI2 and its signaling partner MORE AXILLARY GROWTH2 (MAX2). Furthermore, kuf1 mutants are hypersensitive to KAR 1 , but not to other molecules that can signal through KAI2 such as GR24. This implies that kuf1 does not increase the overall responsiveness of the KAI2-dependent signaling pathway, but specifically affects the ability of KAI2 to detect certain signals. We hypothesize that KUF1 imposes feedback inhibition of KL biosynthesis and KAR 1 metabolism. As an F-box protein, KUF1 likely participates in an E3 ubiquitin ligase complex that imposes this regulation through polyubiquitylation of a protein target(s). 
    more » « less
  3. Plants are constantly exposed to volatile organic compounds (VOCs) that are released during plant-plant communication, within-plant self-signaling, and plant-microbe interactions. Therefore, understanding VOC perception and downstream signaling is vital for unraveling the mechanisms behind information exchange in plants, which remain largely unexplored. Using the hormone-like function of volatile terpenoids in reproductive organ development as a system with a visual marker for communication, we demonstrate that a petunia karrikin-insensitive receptor, PhKAI2ia, stereospecifically perceives the (−)-germacrene D signal, triggering a KAI2-mediated signaling cascade and affecting plant fitness. This study uncovers the role(s) of the intermediate clade of KAI2 receptors, illuminates the involvement of a KAI2ia-dependent signaling pathway in volatile communication, and provides new insights into plant olfaction and the long-standing question about the nature of potential endogenous KAI2 ligand(s). 
    more » « less
  4. null (Ed.)
    Brassinosteroids (BRs) play pivotal roles in the regulation of many dimensions of a plant’s life. Hence, through extensive efforts from many research groups, BR signaling has emerged as one of the best-characterized plant signaling pathways. The key molecular players of BR signaling from the cell surface to the nucleus important for the regulation of plant growth and development are well-established. Recent data show that BRs also modulate plant responses to environmental stresses such as drought and pathogen infection. In this mini review, we present the recent progress in BR signaling specifically in the post-translational SUMO modification of BR’s master regulators, BES1/BZR1. We also discuss recent findings on the crosstalk between BR, UV light, and jasmonic acid signaling pathways to balance growth during light stress and pathogen infections. Finally, we describe the current update on the molecular link between BR signaling and intracellular auxin transport that essential for plant development. 
    more » « less
  5. SUMMARY Extracellular ATP (eATP) signaling inArabidopsis thalianais mediated by the purinoceptor P2K1. Previous studies have clarified that the downstream transcriptional responses to eATP involve jasmonate (JA)‐based signaling components such as the JA receptor (COI1) and JA‐responsive bHLH transcription factors (MYCs). However, the specific contributions of JA itself on eATP signaling are unexplored. Here, we report that JA primes plant responses to eATP through P2K1. Our findings show that JA treatment significantly upregulatesP2K1transcription, corroborating our observation that JA facilitates eATP‐induced cytosolic calcium elevation and transcriptional reprogramming in a JA signaling‐dependent manner. Additionally, we find that salicylic acid pre‐treatment represses eATP‐induced plant response. These results suggest that JA accumulation during biotic or abiotic stresses potentiates eATP signaling, enabling plants to better cope with subsequent stress events. 
    more » « less