skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Phase 1: Single-Story Testing for Development of Floor Acceleration Simulation Methodology, in Advancing Knowledge on the Performance of Seismic Collectors in Steel Building Structures: Shake Table Tests
Phase 1 used a single-story steel test building with a composite slab and perimeter collectors to develop and validate a Floor Acceleration Simulation Testing (FAST) methodology intended to reproduce multistory floor accelerations in a single-story test frame. White-noise and impulse tests were used to identify dynamic properties, followed by earthquake simulation tests at 20%, 50%, and 100% Design Earthquake (DE) levels to observe collector axial force, slab participation, and connection rotation. White-noise tests: White-noise excitation was applied at low amplitude to identify the natural frequencies, damping ratios, and stiffness characteristics of the structure. These tests were typically conducted before and after earthquake events to track changes in dynamic properties as damage accumulated. Impulse tests: Single-pulse excitation was applied through the shake table to evaluate the transient dynamic characteristics of the structure and to supplement the system-identification testing performed using white-noise input. Floor Acceleration Simulation Testing (FAST): In FAST, the objective was to reproduce realistic multistory floor acceleration demands in a single-story test building. Target floor-acceleration histories were obtained from nonlinear response-history analyses of a 12-story BRBF prototype building (SDII). A transfer-function approach in the frequency domain was then used to compute the shake-table input motion required for the single-story specimen to generate these target accelerations. This approach allowed the specimen to respond essentially elastically while reproducing the amplitude and frequency content of multistory floor accelerations. Earthquake simulation tests: Earthquake events consisted of acceleration time histories based on the 1994 Northridge Earthquake record (Beverly Hills-14145 Mulhol.), scaled to different Design Earthquake (DE) intensity levels. Motions were applied in both direct and sign-reversed directions. These events were used to evaluate collector forces, slab parti  more » « less
Award ID(s):
1662816
PAR ID:
10661889
Author(s) / Creator(s):
; ;
Publisher / Repository:
Designsafe-CI
Date Published:
Edition / Version:
1
Subject(s) / Keyword(s):
Collectors seismic collectors collector connections floor diaphragms composite slab steel buildings shake table testing floor acceleration simulation inertial force NHERI@UC San Diego Large High Performance Outdoor Shake Table (LHPOST)
Format(s):
Medium: X
Institution:
UCSD, University of Arizona
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT This study integrates analytical and experimental research to develop an innovative shake table testing method called Floor Acceleration Simulation Test (FAST). The primary objective of FAST is to produce an essentially elastic response of a single‐story test specimen to replicate the floor acceleration time history including higher‐mode effects of a target floor in a multistory building experiencing inelastic behavior during an earthquake. The FAST method is well suited for experimental research where the absolute accelerations and the associated inertial forces of the floor diaphragms cannot be simulated by the majority of the conventional test methods. The proposed methodology is based on a transfer function in the frequency domain to compute the required input motion for testing. Considering the physical constraints of a given shake table test facility, guidelines with two response spectra to bracket the natural frequency of the test building are also presented for practical implementation. Experimental validation was carried out on a half‐scale, single‐story steel building featuring a composite floor slab, utilizing the NHERI@UCSD Large High‐Performance Outdoor Shake Table (LHPOST) facility. The results demonstrate the effectiveness of FAST, as both analytical predictions and experimental outcomes confirm its validity. Despite instances of measured floor acceleration amplitude exceeding the target response due to table input motion overshooting in this test program, test results confirmed that the FAST accurately reproduced the intended frequency content, indicative of higher mode effects in the multistory prototype building, in the single‐story test building. 
    more » « less
  2. Phase 3 incorporated Buckling-Restrained Braced Frames (BRBFs) into the two-story test building to evaluate collector behavior in the presence of a yielding seismic-force-resisting system. Conventional earthquake simulation was used with scaled ground motions from the 1994 Northridge Earthquake (Beverly Hills-14145 Mulhol.) at 50%, 100%, 150%, and 200% Design Earthquake (DE) levels, including sign-reversed motions. White-noise and impulse tests were used to identify and track dynamic properties. This phase enabled assessment of collector axial force, slab participation, and connection rotation under system-level interaction with brace yielding and load redistribution. For Phase 3, Buckling-Restrained Braced Frames (BRBFs) were added to the same two-story building used in Phases 2. The diaphragm, collector, and connection details remained the same. This specimen was used to evaluate collector behavior in a yielding structural system, including the interaction between diaphragm inertial forces, brace yielding, and load redistribution. Earthquake events consisted of acceleration time histories based on the 1994 Northridge Earthquake record (Beverly Hills-14145 Mulhol.), scaled to different Design Earthquake (DE) intensity levels. Motions were applied in both direct and sign-reversed directions. These events were used to evaluate collector forces, slab participation, inter-story drift, and connection behavior under increasing levels of seismic demand. 
    more » « less
  3. Phase 2A used a two-story steel test building with a composite-slab second floor and a bare-steel roof deck. Added weight was applied only at the second floor. Conventional earthquake simulation was used with scaled ground motions from the 1994 Northridge Earthquake (Beverly Hills-14145 Mulhol.) at 50%, 100%, and 200% Design Earthquake (DE) levels, including sign-reversed motions. White-noise and impulse tests were used to identify dynamic properties. In this phase, the second-floor collectors experienced significant axial forces from diaphragm inertial loading, while the roof collectors were mainly subjected to flexural demands due to negligible roof mass. The Phase 2A specimen was a two-story steel building constructed by adding a second story onto the existing Phase 1 test building. It had a composite-slab second floor, a bare-steel roof deck, and perimeter collectors at both levels. Added mass was installed only at the second floor to generate diaphragm inertial forces during the earthquake-simulation tests. This configuration allowed evaluation of collector behavior when significant axial force developed primarily in the second-floor collectors, while the roof collectors experienced mainly flexural demand associated with story drift. 
    more » « less
  4. ABSTRACT This data paper presents data obtained from E‐Defense shake‐table tests of a full‐scale, steel moment‐resisting frame (MRF) supplemented with Spines. Herein, the Spines were pin‐based columns with sufficient stiffness and strength to distribute plastic deformation evenly over the height of the MRF. The specimen was tested under two configurations: first, with the Spine rigidly connected to the MRF; second, with the Spine connected to the MRF through force‐limiting connections (FLCs). Each specimen configuration underwent earthquake simulations using ground motions with two scale factors. The tests demonstrated the expected benefits of Spines as well as the disadvantage of inducing large floor accelerations in the structure and large shear forces in the Spines. The tests also demonstrated how the FLCs can mitigate these disadvantages. This data paper reports an overview of the tests, data archive structure, and potential use of the data. The data can be used, for example, to reproduce the observations presented by the authors, to compare the dynamic response of the specimen with building specimens tested in other shake‐table test programs, to validate numerical models against the measured specimen response, or to formulate classroom exercises on system identification of linear and nonlinear systems. 
    more » « less
  5. To advance understanding of the multihazard performance of midrise cold-formed steel (CFS) construction, a unique multidisciplinary experimental program was conducted on the Large High-Performance Outdoor Shake Table (LHPOST) at the University of California, San Diego (UCSD). The centerpiece of this project involved earthquake and live fire testing of a full-scale 6-story CFS wall braced building. Initially, the building was subjected to seven earthquake tests of increasing motion intensity, sequentially targeting service, design, and maximum credible earthquake (MCE) demands. Subsequently, live fire tests were conducted on the earthquake-damaged building at two select floors. Finally, for the first time, the test building was subjected to two postfire earthquake tests, including a low-amplitude aftershock and an extreme near-fault target MCE-scaled motion. In addition, low-amplitude white noise and ambient vibration data were collected during construction and seismic testing phases to support identification of the dynamic state of the building system. This paper offers an overview of this unique multihazard test program and presents the system-level structural responses and physical damage features of the test building throughout the earthquake-fire-earthquake test phases, whereas the component-level seismic behavior of the shear walls and seismic design implications of CFS-framed building systems are discussed in a companion paper. 
    more » « less