skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: SnoTATOS: a low-cost, autonomous system for distributed snow depth measurements on sea ice
Abstract. Snow is a critical component of the Arctic sea ice system. With its low thermal conductivity and high albedo, snow moderates energy transfer between the atmosphere and ocean during both winter and summer, thereby playing a significant role in determining the magnitude, timing, and variability in sea ice growth and melt. The depth of snow on Arctic sea ice is highly variable in space and time, and accurate measurements of snow depth and variability are central to improving our basic understanding, model representation, and remote sensing observations of the Arctic system. Our ability to collect those measurements has hitherto been limited by the high cost and large size of existing autonomous snow measurement systems. We designed a new system called SnoTATOS (the Snow Thickness and Temperature Observation System) to address this gap. SnoTATOS is a radio-networked, distributed snow depth observation system that is 95 % less expensive and 93 % lighter than existing systems. In this paper, we describe the technical specifications of the system and present results from a case study deployment of four SnoTATOS networks (each with 10 observing nodes) in the Lincoln Sea between April 2024 and February 2025. The study demonstrates the utility of SnoTATOS in collecting distributed, in situ snow depth, accumulation, and surface melt data. While initial snow depth varied by up to 42 % within each network, a comparison of mean initial snow depth between networks showed a maximum difference of only 26 %. Similarly, whereas surface melt varied within each network by up to 38 %, mean surface melt varied between networks by only up to 9 %. This indicates that floe-scale measurements made using SnoTATOS provide valuable snow depth variability information and therefore more representative data for regional intercomparisons than existing single-station systems. We conclude by recommending further research to determine the optimal number and arrangement of autonomous stations needed to capture the variability in snow depth on Arctic sea ice.  more » « less
Award ID(s):
2034919
PAR ID:
10662387
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Copernicus Publications
Date Published:
Journal Name:
The Cryosphere
Volume:
19
Issue:
11
ISSN:
1994-0424
Page Range / eLocation ID:
6059 to 6076
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Melt ponds on sea ice play an important role in the Arctic climate system. Their presence alters the partitioning of solar radiation: decreasing reflection, increasing absorption and transmission to the ice and ocean, and enhancing melt. The spatiotemporal properties of melt ponds thus modify ice albedo feedbacks and the mass balance of Arctic sea ice. The Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition presented a valuable opportunity to investigate the seasonal evolution of melt ponds through a rich array of atmosphere-ice-ocean measurements across spatial and temporal scales. In this study, we characterize the seasonal behavior and variability in the snow, surface scattering layer, and melt ponds from spring melt to autumn freeze-up using in situ surveys and auxiliary observations. We compare the results to satellite retrievals and output from two models: the Community Earth System Model (CESM2) and the Marginal Ice Zone Modeling and Assimilation System (MIZMAS). During the melt season, the maximum pond coverage and depth were 21% and 22 ± 13 cm, respectively, with distribution and depth corresponding to surface roughness and ice thickness. Compared to observations, both models overestimate melt pond coverage in summer, with maximum values of approximately 41% (MIZMAS) and 51% (CESM2). This overestimation has important implications for accurately simulating albedo feedbacks. During the observed freeze-up, weather events, including rain on snow, caused high-frequency variability in snow depth, while pond coverage and depth remained relatively constant until continuous freezing ensued. Both models accurately simulate the abrupt cessation of melt ponds during freeze-up, but the dates of freeze-up differ. MIZMAS accurately simulates the observed date of freeze-up, while CESM2 simulates freeze-up one-to-two weeks earlier. This work demonstrates areas that warrant future observation-model synthesis for improving the representation of sea-ice processes and properties, which can aid accurate simulations of albedo feedbacks in a warming climate. 
    more » « less
  2. Atmospheric model systems, such as those used for weather forecast and reanalysis production, often have significant and systematic errors in their representation of the Arctic surface energy budget and its components. The newly available observation data of the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition (2019/2020) enable a range of model analyses and validation in order to advance our understanding of potential model deficiencies. In the present study, we analyze deficiencies in the surface radiative energy budget over Arctic sea ice in the ERA5 global atmospheric reanalysis by comparing against the winter MOSAiC campaign data, as well as, a pan-Arctic level-2 MODIS ice surface temperature remote sensing product. We find that ERA5 can simulate the timing of radiatively clear periods, though it is not able to distinguish the two observed radiative Arctic winter states, radiatively clear and opaquely cloudy, in the distribution of the net surface radiative budget. The ERA5 surface temperature over Arctic sea ice has a conditional error with a positive bias in radiatively clear conditions and a negative bias in opaquely cloudy conditions. The mean surface temperature error is 4°C for radiatively clear situations at MOSAiC and up to 15°C in some parts of the Arctic. The spatial variability of the surface temperature, given by 4 observation sites at MOSAiC, is not captured by ERA5 due to its spatial resolution but represented in the level-2 satellite product. The sensitivity analysis of possible error sources, using satellite products of snow depth and sea ice thickness, shows that the positive surface temperature errors during radiatively clear events are, to a large extent, caused by insufficient sea ice thickness and snow depth representation in the reanalysis system. A positive bias characterizes regions with ice thickness greater than 1.5 m, while the negative bias for thinner ice is partly compensated by the effect of snow. 
    more » « less
  3. Abstract Snow plays an essential role in the Arctic as the interface between the sea ice and the atmosphere. Optical properties, thermal conductivity and mass distribution are critical to understanding the complex Arctic sea ice system’s energy balance and mass distribution. By conducting measurements from October 2019 to September 2020 on the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition, we have produced a dataset capturing the year-long evolution of the physical properties of the snow and surface scattering layer, a highly porous surface layer on Arctic sea ice that evolves due to preferential melt at the ice grain boundaries. The dataset includes measurements of snow during MOSAiC. Measurements included profiles of depth, density, temperature, snow water equivalent, penetration resistance, stable water isotope, salinity and microcomputer tomography samples. Most snowpit sites were visited and measured weekly to capture the temporal evolution of the physical properties of snow. The compiled dataset includes 576 snowpits and describes snow conditions during the MOSAiC expedition. 
    more » « less
  4. Precise measurements of Arctic sea ice mass balance are necessary to understand the rapidly changing sea ice cover and its representation in climate models. During the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition, we made repeat point measurements of snow and ice thickness on primarily level first- and second-year ice (FYI, SYI) using ablation stakes and ice thickness gauges. This technique enabled us to distinguish surface and bottom (basal) melt and characterize the importance of oceanic versus atmospheric forcing. We also evaluated the time series of ice growth and melt in the context of other MOSAiC observations and historical mass balance observations from the Surface Heat Budget of the Arctic (SHEBA) campaign and the North Pole Environmental Observatory (NPEO). Despite similar freezing degree days, average ice growth at MOSAiC was greater on FYI (1.67 m) and SYI (1.23 m) than at SHEBA (1.45 m, 0.53 m), due in part to initially thinner ice and snow conditions on MOSAiC. Our estimates of effective snow thermal conductivity, which agree with SHEBA results and other MOSAiC observations, are unlikely to explain the difference. On MOSAiC, FYI grew more and faster than SYI, demonstrating a feedback loop that acts to increase ice production after multi-year ice loss. Surface melt on MOSAiC (mean of 0.50 m) was greater than at NPEO (0.18 m), with considerable spatial variability that correlated with surface albedo variability. Basal melt was relatively small (mean of 0.12 m), and higher than NPEO observations (0.07 m). Finally, we present observations showing that false bottoms reduced basal melt rates in some FYI cases, in agreement with other observations at MOSAiC. These detailed mass balance observations will allow further investigation into connections between the carefully observed surface energy budget, ocean heat fluxes, sea ice, and ecosystem at MOSAiC and during other campaigns. 
    more » « less
  5. Abstract Snow is the most reflective natural surface on Earth. Since fresh snow on bare sea ice increases the surface albedo, the impact of summer snow accumulation can have a negative radiative forcing effect, which would inhibit sea ice surface melt and potentially slow sea‐ice loss. However, it is not well known how often, where, and when summer snowfall events occur on Arctic sea ice. In this study, we used in situ and model snow depth data paired with surface albedo and atmospheric conditions from satellite retrievals to characterize summer snow accumulation on Arctic sea ice from 2003 to 2017. We found that, across the Arctic, ∼2 snow accumulation events occurred on initially snow‐free conditions each year. The average snow depth and albedo increases were ∼2 cm and 0.08, respectively. 16.5% of the snow accumulation events were optically thick (>3 cm deep) and lasted 2.9 days longer than the average snow accumulation event (3.4 days). Based on a simple, multiple scattering radiative transfer model, we estimated a −0.086 ± 0.020 W m−2change in the annual average top‐of‐the‐atmosphere radiative forcing for summer snowfall events in 2003–2017. The following work provides new information on the frequency, distribution, and duration of observed snow accumulation events over Arctic sea ice in summer. Such results may be particularly useful in understanding the impacts of ephemeral summer weather on surface albedo and their propagating effects on the radiative forcing over Arctic sea ice, as well as assessing climate model simulations of summer atmosphere‐ice processes. 
    more » « less