This dataset includes 32Si and 14C production data (experimental) from EXPORTS cruise RR1813. The EXPORTS field campaign in the subarctic North Pacific sampled an ecosystem characterized as high nutrient low chlorophyll (HNLC) due to low iron (Fe) levels that are primary controllers constraining phytoplankton utilization of other nutrients. It has been a paradigm in low Fe, HNLC systems that diatoms grow at elevated Si:C and Si:N ratios and should be efficiently exported as particles significantly enriched in Si relative to C. However, Fe limitation also alters diatoms species composition and the high Si demand imposed by low Fe can drive HNLC regions to Si limitation or Si/Fe co-limitation. Thus, the degree of Si and/or Fe stress in HNLC waters can all alter diatom taxonomic composition, the elemental composition of diatom cells, and the path cells follow through the food web ultimately altering diatom carbon export. Within each ecosystem state examined in the EXPORTS program, nutrient biogeochemistry, diatom and phytoplankton community structure, and global diatom gene expression patterns (metatranscriptomics) are characterized in the lit ocean. Nutrient amendment experiments with tracer addition (14C, 32Si) are used to quantify the level of Si and Fe stress being experienced by the phytoplankton and to contextualize taxa-specific metatranscriptome responses for resolving gene expression profiles in the in situ communities.
more »
« less
The effects of iron limitation on the small chlorophyte Micromonas from the Northeast Pacific Ocean
Abstract Small eukaryotic phytoplankton can account for a considerable amount of biomass and primary production in high nutrient, low chlorophyll (HNLC) regions of the ocean where iron limitation is pronounced. However, the physiological and metabolic strategies these cells invoke to cope under low iron conditions and the extent to which they are responsible for new production (i.e., the fraction of primary production supported by nutrients from outside of the euphotic zone) are unclear. Here, we examined how a representative picoeukaryote—the chlorophyteMicromonassp., recently isolated from the iron‐limited subarctic Northeast Pacific Ocean—responded to iron limitation when grown on nitrate as a nitrogen source. Iron‐limitedMicromonasexhibited reductions in growth rate, cell volume, and elemental quotas along with a restructuring of cellular metabolism. Gene expression and metabolic pathway analyses showed evidence of strategies to mitigate iron limitation with constitutive expression of genes related to nitrogen uptake and utilization. Additionally, cellular carbon and nitrogen quotas were 20–70 fmol C · cell−1and 3.3–20 fmol N · cell−1, respectively, as a function of iron status. Based on the measured cellular quotas, we have estimated that representative picoeukaryotes (<2 μm), such asMicromonas,in HNLC Northeast Pacific waters can account for a significant proportion of new production, supporting the need for a reconsideration of the role small eukaryotic phytoplankton play in the global carbon cycle.
more »
« less
- Award ID(s):
- 2219973
- PAR ID:
- 10662524
- Publisher / Repository:
- Journal of Phycology
- Date Published:
- Journal Name:
- Journal of Phycology
- Volume:
- 61
- Issue:
- 5
- ISSN:
- 0022-3646
- Page Range / eLocation ID:
- 1251 to 1262
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Synechococcus are the most abundant cyanobacteria in high latitude regions and are responsible for an estimated 17% of annual marine net primary productivity. Despite their biogeochemical importance, Synechococcus populations have been unevenly sampled across the ocean, with most studies focused on low-latitude strains. In particular, the near absence of Synechococcus genomes from high-latitude, High Nutrient Low Chlorophyll (HNLC) regions leaves a gap in our knowledge of picocyanobacterial adaptations to iron limitation and their influence on carbon, nitrogen, and iron cycles. We examined Synechococcus populations from the subarctic North Pacific, a well-characterized HNLC region, with quantitative metagenomics. Assembly with short and long reads produced two near complete Synechococcus metagenome-assembled genomes (MAGs). Quantitative metagenome-derived abundances of these populations matched well with flow cytometry counts, and the Synechococcus MAGs were estimated to comprise >99% of the Synechococcus at Station P. Whereas the Station P Synechococcus MAGs contained multiple genes for adaptation to iron limitation, both genomes lacked genes for uptake and assimilation of nitrate and nitrite, suggesting a dependence on ammonium, urea, and other forms of recycled nitrogen leading to reduced iron requirements. A global analysis of Synechococcus nitrate reductase abundance in the TARA Oceans dataset found nitrate assimilation genes are also lower in other HNLC regions. We propose that nitrate and nitrite assimilation gene loss in Synechococcus may represent an adaptation to severe iron limitation in high-latitude regions where ammonium availability is higher. Our findings have implications for models that quantify the contribution of cyanobacteria to primary production and subsequent carbon export.more » « less
-
Abstract Dissolved iron (dFe) plays an important role in regulating marine productivity. In high nutrient, low chlorophyll regions (>33% of the global ocean), iron is the primary growth limiting nutrient, and elsewhere iron can regulate nitrogen fixation by diazotrophs. The link between iron availability and carbon export is strongly dependent on the phytoplankton iron quotas or cellular Fe:C ratios. This ratio varies by more than an order of magnitude in the open ocean and is positively correlated with ambient dFe concentrations in field observations. Representing Fe:C ratios within models is necessary to investigate how ocean carbon cycling will interact with perturbations to iron cycling in a changing climate. The Community Earth System Model ocean component was modified to simulate dynamic, group‐specific, phytoplankton Fe:C that varies as a function of ambient iron concentration. The simulated Fe:C ratios improve the representation of the spatial trends in the observed Fe:C ratios. The acclimation of phytoplankton Fe:C ratios dampens the biogeochemical response to varying atmospheric deposition of soluble iron, compared to a fixed Fe:C ratio. However, varying atmospheric soluble iron supply has first order impacts on global carbon and nitrogen fluxes and on nutrient limitation spatial patterns. Our results suggest that pyrogenic Fe is a significant dFe source that rivals mineral dust inputs in some regions. Changes in dust flux and iron combustion sources (anthropogenic and wildfires) will modify atmospheric Fe inputs in the future. Accounting for dynamic phytoplankton iron quotas is critical for understanding ocean biogeochemistry and projecting its response to variations in atmospheric deposition.more » « less
-
This dataset includes depth profiles in the euphotic zone of nutrient (nitrate, silicate, phosphate) concentrations and profiles of silicic acid uptake rates from EXPORTS cruise RR1813. The EXPORTS field campaign in the subarctic North Pacific sampled an ecosystem characterized as high nutrient low chlorophyll (HNLC) due to low iron (Fe) levels that are primary controllers constraining phytoplankton utilization of other nutrients. It has been a paradigm in low Fe, HNLC systems that diatoms grow at elevated Si:C and Si:N ratios and should be efficiently exported as particles significantly enriched in Si relative to C. However, Fe limitation also alters diatoms species composition and the high Si demand imposed by low Fe can drive HNLC regions to Si limitation or Si/Fe co-limitation. Thus, the degree of Si and/or Fe stress in HNLC waters can all alter diatom taxonomic composition, the elemental composition of diatom cells, and the path cells follow through the food web ultimately altering diatom carbon export. Within each ecosystem state examined in the EXPORTS program, nutrient biogeochemistry, diatom and phytoplankton community structure, and global diatom gene expression patterns (metatranscriptomics) are characterized in the lit ocean. Nutrient amendment experiments with tracer addition (14C, 32Si) are used to quantify the level of Si and Fe stress being experienced by the phytoplankton and to contextualize taxa-specific metatranscriptome responses for resolving gene expression profiles in the in situ communities.more » « less
-
Abstract Marine biogeochemical cycles are built on interactions between surface ocean microbes, particularly those connecting phytoplankton primary producers to heterotrophic bacteria. Details of these associations are not well understood, especially in the case of direct influences of bacteria on phytoplankton physiology. Here we catalogue how the presence of three marine bacteria (Ruegeria pomeroyiDSS‐3,Stenotrophomonassp. SKA14 andPolaribacter dokdonensisMED152) individually and uniquely impact gene expression of the picoeukaryotic algaMicromonas commodaRCC 299. We find a dramatic transcriptomic remodelling byM. commodaafter 8 h in co‐culture, followed by an increase in cell numbers by 56 h compared with the axenic cultures. Some aspects of the algal transcriptomic response are conserved across all three bacterial co‐cultures, including an unexpected reduction in relative expression of photosynthesis and carbon fixation pathways. Expression differences restricted to a single bacterium are also observed, with the FlavobacteriiaP. dokdonensisuniquely eliciting changes in relative expression of algal genes involved in biotin biosynthesis and the acquisition and assimilation of nitrogen. This study reveals thatM. commodahas rapid and extensive responses to heterotrophic bacteria in ways that are generalizable, as well as in a taxon specific manner, with implications for the diversity of phytoplankton‐bacteria interactions ongoing in the surface ocean.more » « less
An official website of the United States government

