%AVajente, G.%AVajente, G. [LIGO Laboratory, California Institute of Technology, Pasadena, California 91125, USA]%AQuintero, E.%AQuintero, E. [LIGO Laboratory, California Institute of Technology, Pasadena, California 91125, USA]%ANi, X.%ANi, X. [Division of Engineering and Applied Sciences, California Institute of Technology, Pasadena, California 91125, USA]%AArai, K.%AArai, K. [LIGO Laboratory, California Institute of Technology, Pasadena, California 91125, USA]%AGustafson, E.%AGustafson, E. [LIGO Laboratory, California Institute of Technology, Pasadena, California 91125, USA]%ARobertson, N. [LIGO Laboratory, California Institute of Technology, Pasadena, California 91125, USA; SUPA, University of Glasgow, Glasgow G12 8QQ, United Kingdom]%ARobertson, N.%ASanchez, E. [LIGO Laboratory, California Institute of Technology, Pasadena, California 91125, USA]%ASanchez, E.%AGreer, J.%AGreer, J. [Division of Engineering and Applied Sciences, California Institute of Technology, Pasadena, California 91125, USA]%AAdhikari, R.%AAdhikari, R. [LIGO Laboratory, California Institute of Technology, Pasadena, California 91125, USA]%BJournal Name: Review of Scientific Instruments; Journal Volume: 87; Journal Issue: 6; Related Information: CHORUS Timestamp: 2023-07-31 18:48:12 %D2016%IAmerican Institute of Physics %JJournal Name: Review of Scientific Instruments; Journal Volume: 87; Journal Issue: 6; Related Information: CHORUS Timestamp: 2023-07-31 18:48:12 %K %MOSTI ID: 10052131 %PMedium: X %TAn instrument to measure mechanical up-conversion phenomena in metals in the elastic regime %X

Crystalline materials, such as metals, are known to exhibit deviation from a simple linear relation between strain and stress when the latter exceeds the yield stress. In addition, it has been shown that metals respond to varying external stress in a discontinuous way in this regime, exhibiting discrete releases of energy. This crackling noise has been extensively studied both experimentally and theoretically when the metals are operating in the plastic regime. In our study, we focus on the behavior of metals in the elastic regime, where the stresses are well below the yield stress. We describe an instrument that aims to characterize non-linear mechanical noise in metals when stressed in the elastic regime. In macroscopic systems, this phenomenon is expected to manifest as a non-stationary noise modulated by external disturbances applied to the material, a form of mechanical up-conversion of noise. The main motivation for this work is for the case of maraging steel components (cantilevers and wires) in the suspension systems of terrestrial gravitational wave detectors. Such instruments are planned to reach very ambitious displacement sensitivities, and therefore mechanical noise in the cantilevers could prove to be a limiting factor for the detectors’ final sensitivities, mainly due to non-linear up-conversion of low frequency residual seismic motion to the frequencies of interest for the gravitational wave observations. We describe here the experimental setup, with a target sensitivity of 10−15 m/Hz in the frequency range of 10–1000 Hz, a simple phenomenological model of the non-linear mechanical noise, and the analysis method that is inspired by this model.

%0Journal Article