%AThompson, M.%ACheville, R.%BJournal Name: ASEE annual conference & exposition proceedings %D2018%I %JJournal Name: ASEE annual conference & exposition proceedings %K %MOSTI ID: 10062693 %PMedium: X %TNavigating Process-Product Tensions using a Design Canvas %XNational surveys of design courses find many similarities between the way capstone courses are structured and implemented, although more programs focus on the design process rather than creating a product. What is not as well understood are the methods and techniques used to inform students of interrelationship between product and process. This paper discusses the use of multiple formal design representations as a means to focus learning on the interrelation between design processes and products. The ability to utilize multiple representations has been demonstrated to be effective in improving student learning in math education, a discipline that can be highly process-oriented. Similarly representational fluency impacts engineering modeling. In the context of teaching design the term representation here refers to a written or graphical expression of some aspect of the design process and/or product. Ideally the set of representations would form a minimal and complete orthonormal basis set; that is the ensemble of representations captures the design in its entirety and the representations are not redundant. Since the design work of many engineers is a set of plans or diagrams (forms of representation) the complete set of representations has the potential to capture both the process of design and serve as a product of design work. Over a four year period a set of representations was developed and trialed in a year-long senior capstone course in electrical and computer engineering at a small, private liberal arts institution. Using an iterative, action research approach that included student input a set of representations was developed by modifying or eliminating ineffective representations and introducing new formats based on analysis of the students’ response and success. To minimize redundancy and work towards completeness (i.e. a lean, 360° view of the process and product) representations were organized using a “design canvas” modeled after the Business Model Canvas. The Design Canvas classifies representations by actionable questions on two axes—system development and design choices— which in turn are organized hierarchically by scale. Results of the project and examples of representations for the current iteration of the Design Canvas are presented along with the Design Canvas development process. %0Journal Article