%ASarkar, Tarapada%AMandal, P.%APoniatowski, N.%AChan, M.%AGreene, Richard%BJournal Name: Science Advances; Journal Volume: 5; Journal Issue: 5 %D2019%I %JJournal Name: Science Advances; Journal Volume: 5; Journal Issue: 5 %K %MOSTI ID: 10096476 %PMedium: X %TCorrelation between scale-invariant normal-state resistivity and superconductivity in an electron-doped cuprate %XAn understanding of the normal state in the high-temperature superconducting cuprates is crucial to the ultimate understanding of the long-standing problem of the origin of the superconductivity itself. This so-called “strange metal” state is thought to be associated with a quantum critical point (QCP) hidden beneath the superconductivity. In electron-doped cuprates—in contrast to hole-doped cuprates—it is possible to access the normal state at very low temperatures and low magnetic fields to study this putative QCP and to probe the T ➔ 0 K state of these materials. We report measurements of the low-temperature normal-state magnetoresistance (MR) of the n-type cuprate system La 2− x Ce x CuO 4 and find that it is characterized by a linear-in-field behavior, which follows a scaling relation with applied field and temperature, for doping ( x ) above the putative QCP ( x = 0.14). The magnitude of the unconventional linear MR decreases as T c decreases and goes to zero at the end of the superconducting dome ( x ~ 0.175) above which a conventional quadratic MR is found. These results show that there is a strong correlation between the quantum critical excitations of the strange metal state and the high- T c superconductivity. %0Journal Article