%AKrishnan, Archanaa%ASchaumont, Patrick%D2018%I %K %MOSTI ID: 10097895 %PMedium: X %TExploiting Security Vulnerabilities in Intermittent Computing %XEnergy harvesters have enabled widespread utilization of ultra-low-power devices that operate solely based on the energy harvested from the environment. Due to the unpredictable nature of harvested energy, these devices experience frequent power outages. They resume execution after a power loss by utilizing intermittent computing techniques and non-volatile memory. In embedded devices, intermittent computing refers to a class of computing that stores a snapshot of the system and application state, as a checkpoint, in non-volatile memory, which is used to restore the system and application state in case of power loss. Although non-volatile memory provides tolerance against power failures, they introduce new vulnerabilities to the data stored in them. Sensitive data, stored in a checkpoint, is available to an attacker after a power loss, and the state-of-the-art intermittent computing techniques fail to consider the security of checkpoints. In this paper, we utilize the vulnerabilities introduced by the intermittent computing techniques to enable various implementation attacks. For this study, we focus on TI’s Compute Through Power Loss utility as an example of the state-of-the-art intermittent computing solution. First, we analyze the security, or lack thereof, of checkpoints in the latest intermittent computing techniques. Then, we attack the checkpoints and locate sensitive data in non-volatile memory. Finally, we attack AES using this information to extract the secret key. To the best of our knowledge, this work presents the first systematic analysis of the seriousness of security threats present in the field of intermittent computing. Country unknown/Code not availablehttps://doi.org/10.1007/978-3-030-05072-6_7OSTI-MSA