%AZhong, Zichun%AWang, Wenping%ALévy, Bruno%AHua, Jing%AGuo, Xiaohu%BJournal Name: ACM transactions on graphics; Journal Volume: 37; Journal Issue: 4
%D2018%I
%JJournal Name: ACM transactions on graphics; Journal Volume: 37; Journal Issue: 4
%K
%MOSTI ID: 10097916
%PMedium: X
%TComputing a High-Dimensional Euclidean Embedding from an Arbitrary Smooth Riemannian Metric
%XThis article presents a new method to compute a self-intersection free high-dimensional Euclidean embedding (SIFHDE^2) for surfaces and volumes equipped with an arbitrary Riemannian metric. It is already known that given a high-dimensional (high-d) embedding, one can easily compute an anisotropic Voronoi diagram by back-mapping it to 3D space. We show here how to solve the inverse problem, i.e., given an input metric, compute a smooth intersection-free high-d embedding of the input such that the pullback metric of the embedding matches the input metric. Our numerical solution mechanism matches the deformation gradient of the 3D -> higher-d mapping with the given Riemannian metric. We demonstrate the applicability of our method, by using it to construct anisotropic Restricted Voronoi Diagram (RVD) and anisotropic meshing, that are otherwise extremely difficult to compute. In SIFHDE^2 -space constructed by our algorithm, difficult 3D anisotropic computations are replaced with simple Euclidean computations, resulting in an isotropic RVD and its dual mesh on this high-d embedding. Results are compared with the state-of-the-art in anisotropic surface and volume meshings using several examples and evaluation metrics.
%0Journal Article