%ABiswas, Gautam%AHutchins, Nicole%ALédeczi, Ákos%AGrover, Shuchi%ABasu, Satabdi%D2019%I %K %MOSTI ID: 10110545 %PMedium: X %TIntegrating Computational Modeling in K-12 STEM Classrooms %XC2STEM is a web-based learning environment founded on a novel paradigm that combines block-structured, visual programming with the concept of domain specific modeling languages (DSMLs) to promote the synergistic learning of discipline-specific and computational thinking (CT) concepts and practices. Our design-based, collaborative learning environment aims to provide students in K-12 classrooms with immersive experiences in CT through computational modeling in realistic scenarios (e.g., building models of scientific phenomena). The goal is to increase student engagement and include inclusive opportunities for developing key computational skills needed for the 21st century workforce. Research implementations that include a semester-long high school physics classroom study have demonstrated the effectiveness of our approach in supporting synergistic learning of STEM and CS/CT concepts and practices, especially when compared to a traditional classroom approach. This technology demonstration will showcase our CS+X (X = physics, marine biology, or earth science) learning environment and associated curricula. Participants can engage in our design process and learn how to develop curricular modules that cover STEM and CS/CT concepts and practices. Our work is supported by an NSF STEM+C grant and involves a multi-institutional team comprising Vanderbilt University, SRI International, Looking Glass Ventures, Stanford University, Salem State University, and ETR. More information, including example computational modeling tasks, can be found at C2STEM.org. Country unknown/Code not availablehttps://doi.org/10.1145/3287324.3293757OSTI-MSA