%AAli, Hadi%ALande, Micah%D2019%I %K %MOSTI ID: 10112031 %PMedium: X %TUnderstanding the Roles of Low-fidelity Prototypes in Engineering Design Activity %XPractical ingenuity is demonstrated in engineering design through many ways. Students and practitioners alike create many iterations of prototypes in solving problems and design challenges. While focus is on the end product and/or the process employed along the way, this study combines these interests to better understand the product and process through the roles of initial prototyping through the creation of such things as alpha prototypes, conceptual mock-ups, and other rapid prototypes. We explore the purposes and affordances of these low-fidelity prototypes in engineering design activity through both synthesis of different perspectives from literature to compose an integrated framework to characterize prototypes that are developed as part of ideation in designing, as well as historic and student examples and case studies. Studying prototyping (activity) and prototypes (artifacts) is a way to studying design thinking and how students and practitioners learn and apply a problem solving process to their work. Prototyping can make readily evident and explicit (through act of creating and the creations themselves) some of the thinking and insights of the engineering designer into the design problem. Initial, low-fidelity prototypes are characterized as prototypes that are not always elaborate depictions containing all the fine details of the design. In fact, features in a prototype do not always appear in the final design. The underpinning of this work is that prototyping, as a process, is an act of externalizing design thinking, embodying it through physical objects. While several prescriptive frameworks have been developed to describe what prototypes prototype and the role of prototype, the role of low-fidelity prototypes, specifically, lacks sufficient attention. We will present prototyping rather as an holistic mindset that can be a means to approach problem solving in a more accessible manner. It can be helpful to apply this sort of mindset approach from these initial problem understanding through functional decomposition to quickly communicate and learn by trial and building in learning loops to oneself, with an engineering design team, and to potential stakeholders outside the team.