%AWagle, Ankit%AAzari, Elham%AVrudhula, Sarma%D2019%I %K %MOSTI ID: 10131452 %PMedium: X %TEmbedding Binary Perceptrons in FPGA to improve Area, Power and Performance %XFor the flexibility of implementing any given Boolean function(s), the FPGA uses re-configurable building blocks called LUTs. The price for this reconfigurability is a large number of registers and multiplexers required to construct the FPGA. While researchers have been working on complex LUT structures to reduce the area and power for several years, most of these implementations come at the cost of performance penalty. This paper demonstrates simultaneous improvement in area, power, and performance in an FPGA by using special logic cells called Threshold Logic Cells (TLCs) (also known as binary perceptrons). The TLCs are capable of implementing a complex threshold function, which if implemented using conventional gates would require several levels of logic gates. The TLCs only require 7 SRAM cells and are significantly faster than the conventional LUTs. The implementation of the proposed FPGA architecture has been done using 28nm FDSOI standard cells and has been evaluated using ISCAS-85, ISCAS-89, and a few large industrial designs. Experiments demonstrate that the proposed architecture can be used to get an average reduction of 18.1% in configuration registers, 18.1% reduction in multiplexer count, 12.3% in Basic Logic Element (BLE) area, 16.3% in BLE power, 5.9% improvement in operating frequency, with a slight reduction in track count, routing area and routing power. The improvements are also demonstrated on the physically designed version of the architecture. Country unknown/Code not availablehttps://doi.org/10.1109/ICCAD45719.2019.8942071OSTI-MSA