%AGupta, Vani%AShenoy, Prashant%ASitaraman, Ramesh%D2019%I %K %MOSTI ID: 10173206 %PMedium: X %TCombining Renewable Solar and Open Air Cooling for Greening Internet-Scale Distributed Networks %XThe widespread adoption and popularity of Internet-scale Distributed Networks (IDNs) has led to an explosive growth in the infrastructure of these networks. Unfortunately, this growth has also led to a rapid increase in energy consumption with its accompanying environmental impact. Therefore, energy efficiency is a key consideration in operating and designing these power-hungry networks. In this paper, we study the greening potential of combining two contrasting sources of renewable energy, namely solar energy and Open Air Cooling (OAC). OAC involves the use of outside air to cool data centers if the weather outside is cold and dry enough. Therefore OAC is likely to be abundant in colder weather and at night-time. In contrast, solar energy is correlated with sunny weather and day-time. Given their contrasting natures, we study whether synthesizing these two renewable sources of energy can yield complementary benefits. Given the intermittent nature of renewable energy, we use batteries and load shifting to facilitate the use of green energy and study trade-offs in brown energy reduction based on key parameters like battery size, number of solar panels, and radius of load movement. We do a detailed cost analysis, including amortized cost savings as well as a break-even analysis for different energy prices. Our results look encouraging and we find that we can significantly reduce brown energy consumption by about 55% to 59% just by combining the two technologies. We can increase our savings further to between 60% to 65% by adding load movement within a radius of 5000kms, and to between 73% to 89% by adding batteries. Country unknown/Code not availablehttps://doi.org/10.1145/3307772.3328307OSTI-MSA