%AGonzalez, Christopher%ATang, Bin%D2020%I %K %MOSTI ID: 10174515 %PMedium: X %TFT-VMP: Fault-Tolerant Virtual Machine Placement in Cloud Data Centers %XVirtual machine (VM) replication is an effective technique in cloud data centers to achieve fault-tolerance, load-balance, and quick-responsiveness to user requests. In this paper we study a new fault-tolerant VM placement problem referred to as FT-VMP. Given that different VM has different fault-tolerance requirement (i.e., different VM requires different number of replica copies) and compatibility requirement (i.e., some VMs and their replicas cannot be placed into some physical machines (PMs) due to software or platform incompatibility), FT-VMP studies how to place VM replica copies inside cloud data centers in order to minimize the number of PMs storing VM replicas, under the constraints that i) for fault-tolerant purpose, replica copies of the same VM cannot be placed inside the same PM and ii) each PM has a limited amount of storage capacity. We first prove that FT-VMP is NP-hard. We then design an integer linear programming (ILP)-based algorithm to solve it optimally. As ILP takes time to compute thus is not suitable for large scale cloud data centers, we design a suite of efficient and scalable heuristic fault-tolerant VM placement algorithms. We show that a) ILP-based algorithm outperforms the state-of-the-art VM replica placement in a wide range of network dynamics and b) that all our fault-tolerant VM placement algorithms are able to turn off significant number of PMs to save energy in cloud data centers. In particular, we show that our algorithms can consolidate (i.e., turn off) around 100 PMs in a small data center of 256 PMs and 700 PMs in a large data center of 1028PMs. Country unknown/Code not availablehttps://doi.org/10.1109/ICCCN49398.2020.9209676OSTI-MSA