%AKelley, Elizabeth%AKelley, Elizabeth%AButler, Paul%AButler, Paul%AAshkar, Rana%AAshkar, Rana%ABradbury, Robert%ABradbury, Robert%ANagao, Michihiro%ANagao, Michihiro%BJournal Name: Proceedings of the National Academy of Sciences; Journal Volume: 117; Journal Issue: 38; Related Information: CHORUS Timestamp: 2021-03-30 17:22:03 %D2020%IProceedings of the National Academy of Sciences %JJournal Name: Proceedings of the National Academy of Sciences; Journal Volume: 117; Journal Issue: 38; Related Information: CHORUS Timestamp: 2021-03-30 17:22:03 %K %MOSTI ID: 10190456 %PMedium: X %TScaling relationships for the elastic moduli and viscosity of mixed lipid membranes %X

The elastic and viscous properties of biological membranes play a vital role in controlling cell functions that require local reorganization of the membrane components as well as dramatic shape changes such as endocytosis, vesicular trafficking, and cell division. These properties are widely acknowledged to depend on the unique composition of lipids within the membrane, yet the effects of lipid mixing on the membrane biophysical properties remain poorly understood. Here, we present a comprehensive characterization of the structural, elastic, and viscous properties of fluid membranes composed of binary mixtures of lipids with different tail lengths. We show that the mixed lipid membrane properties are not simply additive quantities of the single-component analogs. Instead, the mixed membranes are more dynamic than either of their constituents, quantified as a decrease in their bending modulus, area compressibility modulus, and viscosity. While the enhanced dynamics are seemingly unexpected, we show that the measured moduli and viscosity for both the mixed and single-component bilayers all scale with the area per lipid and collapse onto respective master curves. This scaling links the increase in dynamics to mixing-induced changes in the lipid packing and membrane structure. More importantly, the results show that the membrane properties can be manipulated through lipid composition the same way bimodal blends of surfactants, liquid crystals, and polymers are used to engineer the mechanical properties of soft materials, with broad implications for understanding how lipid diversity relates to biomembrane function.

%0Journal Article