%APan, Menghai%AHuang, Weixiao%ALi, Yanhua%AZhou, Xun%ALuo, Jun%D2020%I %K %MOSTI ID: 10195287 %PMedium: X %TxGAIL: Explainable Generative Adversarial Imitation Learning for Explainable Human Decision Analysis %XTo make daily decisions, human agents devise their own "strategies" governing their mobility dynamics (e.g., taxi drivers have preferred working regions and times, and urban commuters have preferred routes and transit modes). Recent research such as generative adversarial imitation learning (GAIL) demonstrates successes in learning human decision-making strategies from their behavior data using deep neural networks (DNNs), which can accurately mimic how humans behave in various scenarios, e.g., playing video games, etc. However, such DNN-based models are "black box" models in nature, making it hard to explain what knowledge the models have learned from human, and how the models make such decisions, which was not addressed in the literature of imitation learning. This paper addresses this research gap by proposing xGAIL, the first explainable generative adversarial imitation learning framework. The proposed xGAIL framework consists of two novel components, including Spatial Activation Maximization (SpatialAM) and Spatial Randomized Input Sampling Explanation (SpatialRISE), to extract both global and local knowledge from a well-trained GAIL model that explains how a human agent makes decisions. Especially, we take taxi drivers' passenger-seeking strategy as an example to validate the effectiveness of the proposed xGAIL framework. Our analysis on a large-scale real-world taxi trajectory data shows promising results from two aspects: i) global explainable knowledge of what nearby traffic condition impels a taxi driver to choose a particular direction to find the next passenger, and ii) local explainable knowledge of what key (sometimes hidden) factors a taxi driver considers when making a particular decision. Country unknown/Code not availablehttps://doi.org/10.1145/3394486.3403186OSTI-MSA