%AKuhlman, Chris%AKorkmaz, Gizem%ARavi, S%AVega-Redondo, Fernando.%Anull Ed.%D2020%I %K %MOSTI ID: 10203993 %PMedium: X %TEffect of Interaction Mechanisms on Facebook Dynamics Using a Common Knowledge Model %XWeb-based interactions allow agents to coordinate and to take actions (change state) jointly, i.e., to participate in collective ac- tion such as a protest, facilitating spread of contagion to large groups within networked populations. In game theoretic contexts, coordination requires that agents share common knowledge about each other. Common knowledge emerges within a group when each member knows the states and the types (preferences) of the other members, and critically, each member knows that everyone else has this information. Hence, these models of common knowledge and coordination on communication networks are fundamentally different from influence-based unilateral contagion models, such as those devised by Granovetter and Centola. Common knowledge arises in many settings in practice, yet there are few operational models that can be used to compute contagion dynamics. Moreover, these models utilize different mechanisms for driving contagion. We evaluate the three mechanisms of a common knowledge model that can represent web-based communication among groups of people on Facebook. We evaluate these mechanisms on ve social (media) networks with wide-ranging properties.We demonstrate that di erent mechanisms can produce widely varying behaviors in terms of the extent of contagion spreading and the speed of contagion transmission. Country unknown/Code not availableOSTI-MSA