%ASmith Pellizzeri, Tiffany%ASanjeewa, Liurukara%APellizzeri, Steven%AMcMillen, Colin%AGarlea, V.%AYe, Feng%ASefat, Athena%AKolis, Joseph%Anull Ed.%BJournal Name: Dalton Transactions; Journal Volume: 49; Journal Issue: 14 %D2020%I %JJournal Name: Dalton Transactions; Journal Volume: 49; Journal Issue: 14 %K %MOSTI ID: 10215109 %PMedium: X %TSingle crystal neutron and magnetic measurements of Rb 2 Mn 3 (VO 4 ) 2 CO 3 and K 2 Co 3 (VO 4 ) 2 CO 3 with mixed honeycomb and triangular magnetic lattices %XTwo new alkali vanadate carbonates with divalent transition metals have been synthesized as large single crystals via a high-temperature (600 °C) hydrothermal technique. Compound I , Rb 2 Mn 3 (VO 4 ) 2 CO 3 , crystallizes in the trigonal crystal system in the space group P 3̄1 c , and compound II , K 2 Co 3 (VO 4 ) 2 CO 3 , crystallizes in the hexagonal space group P 6 3 / m . Both structures contain honeycomb layers and triangular lattices made from edge-sharing MO 6 octahedra and MO 5 trigonal bipyramids, respectively. The honeycomb and triangular layers are connected along the c -axis through tetrahedral [VO 4 ] groups. The MO 5 units are connected with each other by carbonate groups in the ab -plane by forming a triangular magnetic lattice. The difference in space groups between I and II was also investigated with Density Functional Theory (DFT) calculations. Single crystal magnetic characterization of I indicates three magnetic transitions at 77 K, 2.3 K, and 1.5 K. The corresponding magnetic structures for each magnetic transition of I were determined using single crystal neutron diffraction. At 77 K the compound orders in the MnO 6 -honeycomb layer in a Néel-type antiferromagnetic orientation while the MnO 5 triangular lattice ordered below 2.3 K in a colinear ‘up–up–down’ fashion, followed by a planar ‘Y’ type magnetic structure. K 2 Co 3 (VO 4 ) 2 CO 3 ( II ) exhibits a canted antiferromagnetic ordering below T N = 8 K. The Curie–Weiss fit (200–350 K) gives a Curie–Weiss temperature of −42 K suggesting a dominant antiferromagnetic coupling in the Co 2+ magnetic sublattices. %0Journal Article