%AGreenstein, Katherine%ANagorzanski, Matthew%AKelsay, Bailey%AVerdugo, Edgard%AMyung, Nosang%AParkin, Gene%ACwiertny, David%Anull Ed.%BJournal Name: Environmental Science: Nano; Journal Volume: 8; Journal Issue: 3 %D2021%I %JJournal Name: Environmental Science: Nano; Journal Volume: 8; Journal Issue: 3 %K %MOSTI ID: 10274107 %PMedium: X %TCarbon–titanium dioxide (C/TiO 2 ) nanofiber composites for chemical oxidation of emerging organic contaminants in reactive filtration applications %XThe recalcitrance of some emerging organic contaminants through conventional water treatment systems may necessitate advanced technologies that use highly reactive, non-specific hydroxyl radicals. Here, polyacrylonitrile (PAN) nanofibers with embedded titanium dioxide (TiO 2 ) nanoparticles were synthesized via electrospinning and subsequently carbonized to produce mechanically stable carbon/TiO 2 (C/TiO 2 ) nanofiber composite filters. Nanofiber composites were optimized for reactivity in flow through treatment systems by varying their mass loading of TiO 2 , adding phthalic acid (PTA) as a dispersing agent for nanoparticles in electrospinning sol gels, comparing different types of commercially available TiO 2 nanoparticles (Aeroxide® P25 and 5 nm anatase nanoparticles) and through functionalization with gold (Au/TiO 2 ) as a co-catalyst. High bulk and surface TiO 2 concentrations correspond with enhanced nanofiber reactivity, while PTA as a dispersant makes it possible to fabricate materials at very high P25 loadings (∼80% wt%). The optimal composite formulation (50 wt% P25 with 2.5 wt% PTA) combining high reactivity and material stability was then tested across a range of variables relevant to filtration applications including filter thickness (300–1800 μm), permeate flux (from 540–2700 L m −2 h), incident light energy (UV-254 and simulated sunlight), flow configuration (dead-end and cross-flow filtration), presence of potentially interfering co-solutes (dissolved organic matter and carbonate alkalinity), and across a suite of eight organic micropollutants (atrazine, benzotriazole, caffeine, carbamazepine, DEET, metoprolol, naproxen, and sulfamethoxazole). During cross-flow recirculation under UV-irradiation, 300 μm thick filters (30 mg total mass) produced micropollutant half-lives ∼45 min, with 40–90% removal (from an initial 0.5 μM concentration) in a single pass through the filter. The initial reaction rate coefficients of micropollutant transformation did not clearly correlate with reported second order rate coefficients for reaction with hydroxyl radical ( k OH ), implying that processes other than reaction with photogenerated hydroxyl radical ( e.g. , surface sorption) may control the overall rate of transformation. The materials developed herein represent a promising next-generation filtration technology that integrates photocatalytic activity in a robust platform for nanomaterial-enabled water treatment. %0Journal Article