%AChen, Jiajie%AHou, Thomas%Anull Ed.%BJournal Name: Communications in mathematical physics; Journal Volume: 383; Journal Issue: 3 %D2021%I %JJournal Name: Communications in mathematical physics; Journal Volume: 383; Journal Issue: 3 %K %MOSTI ID: 10286493 %PMedium: X %TFinite Time Blowup of 2D Boussinesq and 3D Euler Equations with $C^{1,\alpha}$ Velocity and Boundary %XInspired by the numerical evidence of a potential 3D Euler singularity by Luo- Hou [30,31] and the recent breakthrough by Elgindi [11] on the singularity formation of the 3D Euler equation without swirl with $C^{1,\alpha}$ initial data for the velocity, we prove the finite time singularity for the 2D Boussinesq and the 3D axisymmetric Euler equations in the presence of boundary with $C^{1,\alpha}$ initial data for the velocity (and density in the case of Boussinesq equations). Our finite time blowup solution for the 3D Euler equations and the singular solution considered in [30,31] share many essential features, including the symmetry properties of the solution, the flow structure, and the sign of the solution in each quadrant, except that we use $C^{1,\alpha}$ initial data for the velocity field. We use a dynamic rescaling formulation and follow the general framework of analysis developed by Elgindi in [11]. We also use some strategy proposed in our recent joint work with Huang in [7] and adopt several methods of analysis in [11] to establish the linear and nonlinear stability of an approximate self-similar profile. The nonlinear stability enables us to prove that the solution of the 3D Euler equations or the 2D Boussinesq equations with $C^{1,\alpha}$ initial data will develop a finite time singularity. Moreover, the velocity field has finite energy before the singularity time. %0Journal Article