%ABlum, Avrim%AGölz, Paul%Anull Ed.%D2021%I
%K
%MOSTI ID: 10288576
%PMedium: X
%TIncentive-Compatible Kidney Exchange in a Slightly Semi-Random Model
%XMotivated by kidney exchange, we study the following mechanism-design problem: On a directed graph (of transplant compatibilities among patient--donor pairs), the mechanism must select a simple path (a chain of transplantations) starting at a distinguished vertex (an altruistic donor) such that the total length of this path is as large as possible (a maximum number of patients receive a kidney). However, the mechanism does not have direct access to the graph. Instead, the vertices are partitioned over multiple players (hospitals), and each player reports a subset of her vertices to the mechanism. In particular, a player may strategically omit vertices to increase how many of her vertices lie on the path returned by the mechanism. Our objective is to find mechanisms that limit incentives for such manipulation while producing long paths. Unfortunately, in worst-case instances, competing with the overall longest path is impossible while incentivizing (approximate) truthfulness, i.e., requiring that hiding nodes cannot increase a player's utility by more than a factor of 1 + o(1). We therefore adopt a semi-random model where o(n) random edges are added to worst-case instances. While it remains impossible for truthful mechanisms to compete with the overall longest path, we give a truthful mechanism that competes with a weaker but non-trivial benchmark: the length of any path whose subpaths within each player have a minimum average length. In fact, our mechanism satisfies even a stronger notion of truthfulness, which we call matching-time incentive compatibility. This notion of truthfulness requires that each player not only reports her nodes truthfully but also does not stop the returned path at any of her nodes in order to divert it to a continuation inside her own subgraph.
Country unknown/Code not availablehttps://doi.org/10.1145/3465456.3467622OSTI-MSA