%ARodriguez-Mustafa, M.A.%Anull Ed.%BJournal Name: Economic geology %D2021%I %JJournal Name: Economic geology %K %MOSTI ID: 10294819 %PMedium: X %TThe Mina Justa Iron Oxide-Copper-Gold (IOCG) Deposit, Peru: Constraints on Metal and Ore Fluid Sources %XIron oxide-copper-gold (IOCG) deposits are major sources of Cu, contain abundant Fe-oxides and may contain Au, Ag, Co, rare earth elements (REE), U and other metals as economically important byproducts in some deposits. They form by hydrothermal processes, but the source of the metals and ore fluid(s) is still debated. We investigated the geochemistry of magnetite from the manto and breccia ore bodies at the Mina Justa IOCG deposit in Peru to assess the source of the iron oxides and their relationship with the economic Cu mineralization. We identified three magnetite types: Type Inclusion (I) is only found in the manto, is the richest in trace elements, and crystallized between 459 - 707 °C; Type Dark (D) has no visible inclusions and formed at around 543 °C; and Type Bright (B) has no inclusions, has the highest Fe content, and formed at around 443 °C. Magnetite samples from Mina Justa yielded an average δ56Fe ± 2σ value of 0.28 ± 0.05‰ (n=9), an average δ18O ± 2σ value 2.19 ± 0.45‰ (n=9), and Δ’17O values that range between -0.075‰ and -0.047‰. Sulfide separates yielded δ65Cu values that range from -0.32‰ to -0.09‰. The trace element compositions and textures of magnetite, along with temperature estimations for magnetite crystallization, are consistent with the manto magnetite belonging to an IOA style mineralization that was overprinted by a younger, structurally-controlled IOCG event that formed the breccia ore body. Altogether, the stable isotopic data fingerprint a magmatic-hydrothermal source for the ore fluids carrying the Fe and Cu at Mina Justa and preclude the input from meteoric water and basinal brines. %0Journal Article