%AMatlashova, Yuliya%AOishi, Meeko%ABidram, Ali%Anull Ed.%D2021%I %K %MOSTI ID: 10298383 %PMedium: X %TTrust-based User Interface Design for Islanded Alternating Current Microgrids %XMicrogrid systems can provide extensive information using their measurement units to the operators. As microgrid systems become more pervasive, there will be a need to adjust the information an operator requires to provide an optimized user-interface. In this paper, a combinatorial optimization strategy is used to provide an optimal user-interface for the microgrid operator that selects information for display depending on the operator's trust level in the system, and the assigned task. We employ a method based on sensor placement by capturing elements of the interface as different sensors, that find an optimal set of sensors via combinatorial optimization. However, the typical inverter-based microgrid model poses challenges for the combinatorial optimization due to its poor conditioning. To combat the poor conditioning, we decompose the model into its slow and fast dynamics, and focus solely on the slow dynamics, which are more well conditioned. We presume the operator is tasked with monitoring phase angle and active and reactive power control of inverter-based distributed generators. We synthesize user-interface for each of these tasks under a wide range of trust levels, ranging from full trust to no trust. We found that, as expected, more information must be included in the interface when the operator has low trust. Further, this approach exploits the dynamics of the underlying microgrid to minimize information content (to avoid overwhelming the operator). The effectiveness of proposed approach is verified by modeling an inverter-based microgrid in Matlab. Country unknown/Code not availablehttps://doi.org/10.1109/GreenTech48523.2021.00079OSTI-MSA