%AAbratenko, P.%AAn, R.%AAnthony, J.%AArellano, L.%AAsaadi, J.%AAshkenazi, A.%ABalasubramanian, S.%ABaller, B.%ABarnes, C.%ABarr, G.%ABasque, V.%ABathe-Peters, L.%ABenevides Rodrigues, O.%ABerkman, S.%ABhanderi, A.%ABhat, A.%ABishai, M.%ABlake, A.%ABolton, T.%ABook, J.Y.%ACamilleri, L.%ACaratelli, D.%ACaro Terrazas, I.%ACastillo Fernandez, R.%ACavanna, F.%ACerati, G.%AChen, Y.%ACianci, D.%AConrad, J.M.%AConvery, M.%ACooper-Troendle, L.%ACrespo-Anadón, J.I.%ADel Tutto, M.%ADennis, S.R.%ADetje, P.%ADevitt, A.%ADiurba, R.%ADorrill, R.%ADuffy, K.%ADytman, S.%AEberly, B.%AEreditato, A.%AEvans, J.J.%AFine, R.%AFiorentini Aguirre, G.A.%AFitzpatrick, R.S.%AFleming, B.T.%AFoppiani, N.%AFranco, D.%AFurmanski, A.P.%AGarcia-Gamez, D.%AGardiner, S.%AGe, G.%AGollapinni, S.%AGoodwin, O.%AGramellini, E.%AGreen, P.%AGreenlee, H.%AGu, W.%AGuenette, R.%AGuzowski, P.%AHagaman, L.%AHen, O.%AHilgenberg, C.%AHorton-Smith, G.A.%AHourlier, A.%AItay, R.%AJames, C.%AJi, X.%AJiang, L.%AJo, J.H.%AJohnson, R.A.%AJwa, Y.-J.%AKalra, D.%AKamp, N.%AKaneshige, N.%AKaragiorgi, G.%AKetchum, W.%AKirby, M.%AKobilarcik, T.%AKreslo, I.%ALaZur, R.%ALepetic, I.%ALi, K.%ALi, Y.%ALin, K.%ALittlejohn, B.R.%ALouis, W.C.%ALuo, X.%AManivannan, K.%AMariani, C.%AMarsden, D.%AMarshall, J.%AMartinez Caicedo, D.A.%AMason, K.%AMastbaum, A.%AMcConkey, N.%AMeddage, V.%AMettler, T.%AMiller, K.%AMills, J.%AMistry, K.%AMogan, A.%AMohayai, T.%AMoon, J.%AMooney, M.%AMoor, A.F.%AMoore, C.D.%AMora Lepin, L.%AMousseau, J.%AMurphy, M.%ANaples, D.%ANavrer-Agasson, A.%ANebot-Guinot, M.%ANeely, R.K.%ANewmark, D.A.%ANowak, J.%ANunes, M.%APalamara, O.%APaolone, V.%APapadopoulou, A.%APapavassiliou, V.%APate, S.F.%APatel, N.%APaudel, A.%APavlovic, Z.%APiasetzky, E.%APonce-Pinto, I.D.%APrince, S.%AQian, X.%ARaaf, J.L.%ARadeka, V.%ARafique, A.%AReggiani-Guzzo, M.%ARen, L.%ARice, L.C.J.%ARochester, L.%ARodriguez Rondon, J.%ARosenberg, M.%ARoss-Lonergan, M.%AScanavini, G.%ASchmitz, D.W.%ASchukraft, A.%ASeligman, W.%AShaevitz, M.H.%ASharankova, R.%AShi, J.%ASinclair, J.%ASmith, A.%ASnider, E.L.%ASoderberg, M.%ASöldner-Rembold, S.%ASpentzouris, P.%ASpitz, J.%AStancari, M.%ASt., J.%AStrauss, T.%ASutton, K.%ASword-Fehlberg, S.%ASzelc, A.M.%ATagg, N.%ATang, W.%ATerao, K.%AThorpe, C.%ATotani, D.%AToups, M.%ATsai, Y.-T.%AUchida, M.A.%AUsher, T.%AVan De Pontseele, W.%AViren, B.%AWeber, M.%AWei, H.%AWilliams, Z.%AWolbers, S.%AWongjirad, T.%AWospakrik, M.%AWresilo, K.%AWright, N.%AWu, W.%AYandel, E.%AYang, T.%AYarbrough, G.%AYates, L.E.%AYu, H.W.%AZeller, G.P.%AZennamo, J.%AZhang, C.%BJournal Name: Journal of Instrumentation; Journal Volume: 16; Journal Issue: 12 %D2021%I %JJournal Name: Journal of Instrumentation; Journal Volume: 16; Journal Issue: 12 %K %MOSTI ID: 10317515 %PMedium: X %TElectromagnetic shower reconstruction and energy validation with Michel electrons and π 0 samples for the deep-learning-based analyses in MicroBooNE %XAbstract This article presents the reconstruction of the electromagnetic activity from electrons and photons (showers) used in the MicroBooNE deep learning-based low energy electron search. The reconstruction algorithm uses a combination of traditional and deep learning-based techniques to estimate shower energies. We validate these predictions using two ν μ -sourced data samples: charged/neutral current interactions with final state neutral pions and charged current interactions in which the muon stops and decays within the detector producing a Michel electron. Both the neutral pion sample and Michel electron sample demonstrate agreement between data and simulation. Further, the absolute shower energy scale is shown to be consistent with the relevant physical constant of each sample: the neutral pion mass peak and the Michel energy cutoff. %0Journal Article