%AVella, Jarrett%AHuang, Lifeng%AEedugurala, Naresh%AMayer, Kevin%ANg, Tse%AAzoulay, Jason%BJournal Name: Science Advances; Journal Volume: 7; Journal Issue: 24 %D2021%I %JJournal Name: Science Advances; Journal Volume: 7; Journal Issue: 24 %K %MOSTI ID: 10335944 %PMedium: X %TBroadband infrared photodetection using a narrow bandgap conjugated polymer %XPhotodetection spanning the short-, mid-, and long-wave infrared (SWIR-LWIR) underpins modern science and technology. Devices using state-of-the-art narrow bandgap semiconductors require complex manufacturing, high costs, and cooling requirements that remain prohibitive for many applications. We report high-performance infrared photodetection from a donor-acceptor conjugated polymer with broadband SWIR-LWIR operation. Electronic correlations within the π-conjugated backbone promote a high-spin ground state, narrow bandgap, long-wavelength absorption, and intrinsic electrical conductivity. These previously unobserved attributes enabled the fabrication of a thin-film photoconductive detector from solution, which demonstrates specific detectivities greater than 2.10 × 10 9 Jones. These room temperature detectivities closely approach those of cooled epitaxial devices. This work provides a fundamentally new platform for broadly applicable, low-cost, ambient temperature infrared optoelectronics. %0Journal Article